收藏 分享(赏)

广东省华美实验学校2020届高三4月网上考试数学(理)试题 WORD版含答案.doc

上传人:高**** 文档编号:354734 上传时间:2024-05-27 格式:DOC 页数:10 大小:939KB
下载 相关 举报
广东省华美实验学校2020届高三4月网上考试数学(理)试题 WORD版含答案.doc_第1页
第1页 / 共10页
广东省华美实验学校2020届高三4月网上考试数学(理)试题 WORD版含答案.doc_第2页
第2页 / 共10页
广东省华美实验学校2020届高三4月网上考试数学(理)试题 WORD版含答案.doc_第3页
第3页 / 共10页
广东省华美实验学校2020届高三4月网上考试数学(理)试题 WORD版含答案.doc_第4页
第4页 / 共10页
广东省华美实验学校2020届高三4月网上考试数学(理)试题 WORD版含答案.doc_第5页
第5页 / 共10页
广东省华美实验学校2020届高三4月网上考试数学(理)试题 WORD版含答案.doc_第6页
第6页 / 共10页
广东省华美实验学校2020届高三4月网上考试数学(理)试题 WORD版含答案.doc_第7页
第7页 / 共10页
广东省华美实验学校2020届高三4月网上考试数学(理)试题 WORD版含答案.doc_第8页
第8页 / 共10页
广东省华美实验学校2020届高三4月网上考试数学(理)试题 WORD版含答案.doc_第9页
第9页 / 共10页
广东省华美实验学校2020届高三4月网上考试数学(理)试题 WORD版含答案.doc_第10页
第10页 / 共10页
亲,该文档总共10页,全部预览完了,如果喜欢就下载吧!
资源描述

1、高考资源网() 您身边的高考专家2019-2020学年度华美实验学校高三网上考试(理科)数学试题卷2020.4一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡上).1.已知复数z满足z+2iR,z的共轭复数为,则()A.0B.4iC.-4iD.-42.设集合则AB=()A.x|2x5B.x|0x2C.x|-1x0D.x|1x0时,对任意都有成立,求实数b的取值范围.22.选修4-4:参数方程在平面直角坐标系xOy中,圆O的参数方程为(为参数),过点且倾斜角为的直线l与圆O交于A,B两点.(1)求的取值范围;(2)求

2、AB中点P的轨迹的参数方程.23.选修4-5:不等式选讲已知函数 M为不等式f(x)2的解集.(I)求M;(II)证明:当a,bM时,|a+b|1+ab|. 2019-2020 高三4月理科数学网考参考答案一、选择题答题栏(共12小题,每题5分,共60分)题号123456789101112选项CDDBBDAADCBD二、填空题:本大题共4小题,每小题5分,满分20分(13) (14) (15) 24 (16) 17.解:试题解析:(1)由题设得,即.由正弦定理得. 故.(2)由题设及(1)得,即.所以,故. 由题设得,即.由余弦定理得,即,得.故的周长为.18【解析】(1)连接,由已知得,可得

3、四边形为菱形,故,又因为平面平面,且交线为,可得,由线面垂直的判定定理,可得平面,又由平面,所以,又由,所以平面.(2)取的中点,连接,则面,过作,则面,以为原点为轴,为轴,为轴建系,则,可得, 设面的法向量,则,令,可得,则, 即直线与平面所成角的正弦值为.19. (1)由,两边同时取常用对数得:;设,把样本中心点代入,得:,关于的回归方程为:;把代入上式,;活动推出第8天使用扫码支付的人次为331;(2)记一名顾客购物支付的费用为,则的取值可能为:,;分布列为:所以,一名顾客购物的平均费用为:(元)20. 【详解】(1)由已知,点C,D的坐标分别为(0,b),(0,b)又点P的坐标为(0,

4、1),且1于是,解得a2,b 所以椭圆E方程为.(2)当直线AB斜率存在时,设直线AB的方程为ykx1A,B的坐标分别为(x1,y1),(x2,y2)联立,得(2k21)x24kx20其判别式(4k)28(2k21)0所以从而x1x2y1y2x1x2(y11)(y21)(1)(1k2)x1x2k(x1x2)1 所以,当1时,3,此时,3为定值.当直线AB斜率不存在时,直线AB即为直线CD此时213故存在常数1,使得为定值3.21. 【详解】1函数的定义域为当时,所以当时,所以函数在上单调递增当时,令,解得:,当时,所以函数在上单调递减;当时,所以函数在上单调递增综上所述,当,时,函数在上单调递增;当,时,函数在上单调递减,在上单调递增2对任意,有成立,成立,时,当时,当时,在单调递减,在单调递增,设,在递增,可得,即,设,在恒成立在单调递增,且,不等式的解集为实数b的取值范围为22详解:(1)的直角坐标方程为当时,与交于两点当时,记,则的方程为与交于两点当且仅当,解得或,即或综上,的取值范围是(2)的参数方程为为参数, 设,对应的参数分别为,则,且,满足于是,又点的坐标满足所以点的轨迹的参数方程是 为参数, 23试题解析:(I)当时,由得解得;当时,;当时,由得解得.所以的解集.()由()知,当时,从而,因此- 10 - 版权所有高考资源网

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3