ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:126.50KB ,
资源ID:339652      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-339652-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(江苏省涟水县第一中学数学(苏教版)选修4-2理科导学案:矩阵与变换2.2.1-2 恒等变换 伸压变换.doc)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

江苏省涟水县第一中学数学(苏教版)选修4-2理科导学案:矩阵与变换2.2.1-2 恒等变换 伸压变换.doc

1、2.21-2 恒等变换伸压变换三维目标1.知识与技能理解可以用矩阵来表示平面中常见的几何变换掌握恒等变换、伸压变换的矩阵表示与几何意义2.过程与方法通过实例,借助几何图形来研究平面图形的几何变换,让学生感到生动。 3.情感、态度与价值观将新旧知识结合起来,体现知识的螺旋上升。教学重点与难点恒等变换伸压变换教学过程一、复习回顾1.二阶矩阵与列向量的乘法法则是2.它的几何意义是点P(x0,y0)在矩阵的作用下变换成另一个点Q(a11x0a12y0,a21x0a22y0).给定一个二阶矩阵,就确定了一个变换,它的作用是将平面上的一个点(或向量)变换成另一个点(或向量).平面中常见变换是否都可以用矩阵

2、来表示?如果可以,又该怎样来表示?已知ABC,A(2,0),B(1,0),C(0,2),它们在变换T作用前后保持不变,能否用矩阵M来表示?如果能,矩阵M是什么?从图中你发现了什么?在在变换T的作用前后,ABC上所有点的位置都没有发生变化.你能用符号语言来表示它吗?二、建构数学1.恒等变换对平面上一点(向量)或图形施以矩阵对应的变换,都把自己变成自己.我们把这种特殊的矩阵称为恒等矩阵或单位矩阵,所实施的对应变换称做恒等变换.二阶单位矩阵一般记为E.2.伸压变换做一个演示实验(纵坐标不变,横坐标变为原来的2倍),变换T对应的矩阵是什么? 将图形作沿x轴方向伸长或缩短,或作沿y轴方向伸长或缩短的变换

3、矩阵,通常称做沿x轴或y轴的垂直伸压变换矩阵,对应的变换称为垂直伸压变换,简称伸压变换.三、数学应用例1如图所示,已知曲线ysinx经过变换T作用后变为新的曲线C,试求变换T对应的矩阵M,以及曲线C的解析表达式.例2验证圆C:x2y21在矩阵对应的伸压变换下变为一个椭圆,并求此椭圆的方程.探究:将平面图形F作沿x轴方向的伸压变换,其变换矩阵的一般形式是什么?沿y轴方向呢?四、课堂练习1.平面上任意一点在矩阵的作用下 ( )A. 横坐标不变,纵坐标伸长5倍 B. 横坐标不变,纵坐标缩短到倍C. 横坐标,纵坐标均伸长5倍 D. 横坐标,纵坐标均缩短到倍2下列矩阵表示伸压变换的是 ( )A、 B、 C、 D、五、回顾总结1.恒等变换 2.伸压变换2.21-2 恒等变换伸压变换作业1、函义数在矩阵M=变换作用下的结果是 2、将圆在矩阵A=对应的伸压变换下变成一个椭圆,则 3、曲线C在伸压变换下T:)作用得到的图象,则曲线C的方程为 4、求出矩形在矩阵对应的变换作用下得到的图形,并画出示意图。其中5.研究函数在矩阵对应的变换作用下的结果,并画出示意图6、试讨论下列矩阵将所给图形变成了什么图形,并指出该变换是什么变换。(1)方程为; (2)曲线方程为

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1