ImageVerifierCode 换一换
格式:DOCX , 页数:5 ,大小:52.88KB ,
资源ID:339160      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-339160-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(全国通用2022高考数学二轮复习专题二第3讲平面向量训练文.docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

全国通用2022高考数学二轮复习专题二第3讲平面向量训练文.docx

1、第3讲平面向量一、选择题1.(2022全国卷)已知a(1,1),b(1,2),则(2ab)a()A.1 B.0 C.1 D.2解析因为a(1,1),b(1,2),所以2ab2(1,1)(1,2)(1,0),得(2ab)a(1,0)(1,1)1,选C.答案C2.已知向量a(k,3),b(1,4),c(2,1),且(2a3b)c,则实数k()A. B.0 C.3 D.解析因为2a3b(2k3,6),且(2a3b)c,所以(2a3b)c2(2k3)60,解得k3,选C.答案C3.(2022四川卷)设向量a(2,4)与向量b(x,6)共线,则实数x()A.2 B.3 C.4 D.6解析a(2,4),b

2、(x,6),ab,4x260,x3.答案B4.(2022太原模拟)已知a,b均为单位向量,(2ab)(a2b),则向量a,b的夹角为()A. B. C. D.解析因为a,b均为单位向量,所以(2ab)(a2b)223ab,解得ab,所以cosa,b,又a,b0,所以a,b.答案A5.(2022福建卷)设a(1,2),b(1,1),cakb.若bc,则实数k的值等于()A. B. C. D.解析cakb(1,2)k(1,1)(1k,2k),bc,bc0,bc(1,1)(1k,2k)1k2k32k0,k,故选A.答案A二、填空题6.(2022江苏卷)已知向量a(2,1),b(1,2),若manb(

3、9,8)(m,nR),则mn的值为_.解析由向量a(2,1),b(1,2),得manb(2mn,m2n)(9,8),则,解得,故mn3.答案37.(2022郑州模拟)如图,在ABC中,C90,且ACBC3,点M满足2,则_.解析法一如图,建立平面直角坐标系.由题意知:A(3,0),B(0,3),设M(x,y),由2,得解得即M点坐标为(2,1),所以(2,1)(0,3)3.法二()22()23.答案38.(2022安徽卷)ABC是边长为2的等边三角形,已知向量a,b满足2a,2ab,则下列结论中正确的是_(写出所有正确结论的编号).a为单位向量;b为单位向量;ab;b;(4ab).解析ABC为

4、边长是2的等边三角形,|2a|2|a|2,从而|a|1,故正确;又2ab2ab,b,故正确;又()()220,(),即(4ab),故正确.答案三、解答题9.(2022陕西卷)ABC的内角A,B,C 所对的边分别为a,b,c.向量m(a,b)与n(cos A,sin B)平行.(1)求A;(2)若a,b2,求ABC的面积.解(1)因为mn,所以asin Bbcos A0,由正弦定理,得sin Asin Bsin Bcos A0,又sin B0,从而tan A,由于0A,所以A.(2)法一由余弦定理,得a2b2c22bccos A,而a,b2,A,得74c22c,即c22c30,因为c0,所以c3

5、,故ABC的面积为Sbcsin A.法二由正弦定理,得,从而sin B,又由ab,知AB,所以cos B,故sin Csin(AB)sinsin Bcos cos Bsin .所以ABC的面积为Sabsin C.10.已知向量a,b,且x.(1)求ab及|ab|;(2)若f(x)ab2|ab|的最小值是,求的值.解(1)abcos cos sin sin cos 2x,|ab|2,因为x,所以cos x0,所以|ab|2cos x.(2)由(1),可得f(x)ab2|ab|cos 2x4cos x,即f(x)2(cos x)2122.因为x,所以0cos x1.当0时,当且仅当cos x0时,

6、f(x)取得最小值1,这与已知矛盾;当01时,当且仅当cos x时,f(x)取得最小值122,由已知得122,解得;当1时,当且仅当cos x1时,f(x)取得最小值14,由已知得14,解得,这与1相矛盾;综上所述.11.(2022日照模拟)已知在锐角三角形ABC中,角A,B,C的对边分别为a,b,c,向量p(cos Bsin B,2sin B2),q(sin Bcos B,1sin B),且pq.(1)求B的大小;(2)若b2,ABC的面积为,求a,c.解(1)因为pq,所以pq(cos Bsin B)(sin Bcos B)(2sin B2)(1sin B)0,即sin2Bcos2B2sin2B20,即sin2B,又角B是锐角三角形ABC的内角,所以sin B,所以B60.(2)由(1)得B60,又ABC的面积为,所以SABCacsin B,即ac4.由余弦定理得b2a2c22accos B,又b2,所以a2c28,联立,解得ac2.5

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1