1、第4讲数列的求和1已知数列an的前n项和为Sn,且满足a11,anan12n1,则()A1009 B1008 C2 D12已知数列an:,若bn,那么数列bn前n项的和为()A4 B4C1 D.3已知数列an的前n项和Snn26n,则数列|an|的前n项和Tn等于()A6nn2 Bn26n18C. D.4已知数列an满足:an1anan1(n2,nN*),a11,a22,Sn为数列an的前n项和,则S2018()A3 B2 C1 D05对于数列an,定义数列an1an为数列an的“差数列”,若a12,数列an的“差数列”的通项公式为an1an2n,则数列an的前n项和Sn()A2 B2nC2n
2、12 D2n126(多选)已知数列an满足a11,an1(nN*),则下列结论正确的有()A.为等比数列Ban的通项公式为anCan为递增数列D.的前n项和Tn2n23n47在数列an中,a11,an2(1)nan1,记Sn是数列an的前n项和,则S60_.8(2017年新课标)等差数列an的前n项和为Sn,a33,S410,则_.9(2019年新课标)已知an是各项均为正数的等比数列,a12,a32a216.(1)求an的通项公式;(2)设bnlog2an,求数列bn的前n项和10已知数列an的前n项和Sn2n1n2.(1)求数列an的通项公式;(2)设bnlog2(an1),求Tn.11(
3、2018年浙江)已知等比数列an的公比q1,且a3a4a528,a42是a3,a5的等差中项数列bn满足b11,数列(bn1bn)an的前n项和为2n2n.(1)求q的值;(2)求数列bn的通项公式12(2018年天津)设an是等比数列,公比大于0,其前n项和为Sn(nN*),bn是等差数列已知a11,a3a22,a4b3b5,a5b42b6.(1)求an和bn的通项公式;(2)设数列Sn的前n项和为Tn(nN*),)求Tn;)证明:2(nN*)第4讲数列的求和1A解析:S2017a1(a2a3)(a4a5)(a2016a2017)(201)(221)(241)(220161)20171009
4、,1009.故选A.2A解析:an,bn4.Sn4.3C解析:由Snn26n得an是等差数列,且首项为5,公差为2.an5(n1)22n7.n3时,an3时,an0.Tn4A解析:an1anan1,a11,a22,a31,a41,a52,a61,a71,a82,故数列an是周期为6的周期数列,且每连续6项的和为0.故S20183360a2017a2018a1a23.5C解析:an1an2n,an(anan1)(an1an2)(a2a1)a12n12n2222222n222n,Sn2n12.6ABD7480解析:an2(1)nan1,a3a11,a5a31,a7a51,且a4a21,a6a41,
5、a8a61,.a2n1为等差数列,且a2n11(n1)1n,即a11,a32,a53,a74,.S4a1a2a3a41124,S8S4a5a6a7a83418,S12S8a9a10a11a1256112,.该数列构成以4为首项,4为公差的等差数列S604154480.8.解析:设等差数列an的首项为a1,公差为d,依题意有解得数列an的前n项和为Snna1d,2,则2.9解:(1)设an的公比为q,由题设得2q24q16,即q22q80.解得q2(舍去)或q4.因此an的通项公式为an24n122n1.(2)由(1)得bn(2n1)log222n1,数列的前n项和为132n1n2.10解:(1
6、)由得an2n1(n2)当n1时,a1S13,综上所述,an2n1.(2)由bnlog2(an1)log22nn.Tn.11解:(1)由a42是a3,a5的等差中项,得a3a52a44,a3a4a53a4428,解得a48.由a3a520,得820,q1,q2.(2)设cn(bn1bn)an,数列cn前n项和为Sn.由cn解得cn4n1.由(1)可知an2n1,bn1bn(4n1)n1,故bnbn1(4n5)n2,n2,bnb1(bnbn1)(bn1bn2)(b3b2)(b2b1)(4n5)n2(4n9)n373.设Tn37112(4n5)n2,n2,Tn372(4n9)n2(4n5)n1,Tn34424n2(4n5)n1,因此Tn14(4n3)n2,n2,又b11,bn15(4n3)n2.12(1)解:设等比数列an的公比为q.由a11,a3a22,可得q2q20.q0,可得q2,故an2n1.设等差数列bn的公差为d,由a4b3b5,可得b13d4.由a5b42b6,可得3b113d16,从而b11,d1,故bnn.数列an的通项公式为an2n1,数列bn的通项公式为bnn.(2)解:由(1),有Sn2n1,故Tn2k1)knn2n1n2.)证明:,2.