ImageVerifierCode 换一换
格式:DOC , 页数:19 ,大小:522.50KB ,
资源ID:338260      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-338260-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2018高考一轮通用人教A版数学(文)(练习)第3章 第4节 函数Y=ASIN(ΩX+Φ)的图象及三角函数模型的简单应用 WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2018高考一轮通用人教A版数学(文)(练习)第3章 第4节 函数Y=ASIN(ΩX+Φ)的图象及三角函数模型的简单应用 WORD版含答案.doc

1、第四节函数yAsin(x)的图象及三角函数模型的简单应用考纲传真1.了解函数yAsin(x)的物理意义;能画出函数的图象,了解参数A,对函数图象变化的影响.2.会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型1yAsin (x)的有关概念yAsin(x)(A0,0,x0),表示一个振动量时振幅周期频率相位初相ATfx2.用五点法画yAsin(x)一个周期内的简图时,要找五个关键点,如下表所示xx02yAsin(x)0A0A03.由ysin x的图象变换得到yAsin(x)(其中A0,0)的图象先平移后伸缩先伸缩后平移1(思考辨析)判断下列结论的正误(正确的打“”,

2、错误的打“”)(1)利用图象变换作图时“先平移,后伸缩”与“先伸缩,后平移”中平移的单位长度一致()(2)将y3sin 2x的图象左移个单位后所得图象的解析式是y3sin.()(3)函数f(x)Asin(x)的图象的两个相邻对称轴间的距离为一个周期()(4)函数yAcos(x)的最小正周期为T,那么函数图象的两个相邻对称中心之间的距离为.()答案(1)(2)(3)(4)2(2016四川高考)为了得到函数ysin的图象,只需把函数ysin x的图象上所有的点()A向左平行移动个单位长度B向右平行移动个单位长度C向上平行移动个单位长度D向下平行移动个单位长度A把函数ysin x的图象上所有的点向左

3、平行移动个单位长度就得到函数ysin的图象3若函数ysin(x)(0)的部分图象如图341,则()图341A5B4C3D2B由图象可知,x0x0,所以T,所以4.4将函数ysin(2x)的图象沿x轴向左平移个单位后,得到一个偶函数的图象,则的一个可能取值为()A.B.C0DB把函数ysin(2x)沿x轴向左平移个单位后得到函数ysin 2sin为偶函数,则的一个可能取值是.5(教材改编)电流I(单位:A)随时间t(单位:s)变化的函数关系式是I5sin,t0,),则电流I变化的初相、周期分别是_,由初相和周期的定义,得电流I变化的初相是,周期T.函数yAsin(x)的图象及变换已知函数f(x)

4、3sin,xR.(1)画出函数f(x)在一个周期的闭区间上的简图;(2)将函数ysin x的图象作怎样的变换可得到f(x)的图象?解(1)列表取值:xx02f(x)03030描出五个关键点并用光滑曲线连接,得到一个周期的简图.5分(2)先把ysin x的图象向右平移个单位,然后把所有点的横坐标扩大为原来的2倍,再把所有点的纵坐标扩大为原来的3倍,得到f(x)的图象.12分规律方法1.变换法作图象的关键是看x轴上是先平移后伸缩还是先伸缩后平移,对于后者可利用x确定平移单位2用“五点法”作图,关键是通过变量代换,设zx,由z取0,2来求出相应的x,通过列表,描点得出图象如果在限定的区间内作图象,还

5、应注意端点的确定变式训练1(1)(2016全国卷)将函数y2sin的图象向右平移个周期后,所得图象对应的函数为()Ay2sinBy2sinCy2sinDy2sin(2)(2016全国卷)函数ysin xcos x的图象可由函数y2sin x的图象至少向右平移_个单位长度得到(1)D(2)(1)函数y2sin的周期为,将函数y2sin的图象向右平移个周期即个单位长度,所得图象对应的函数为y2sin2sin,故选D.(2)ysin xcos x2sin,函数ysin xcos x的图象可由函数y2sin x的图象向右平移个单位长度得到求函数yAsin(x)的解析式(1)(2016全国卷)函数yAs

6、in(x)的部分图象如图342所示,则()图342Ay2sinBy2sinCy2sinDy2sin(2)已知函数yAsin(x)b(A0,0)的最大值为4,最小值为0,最小正周期为,直线x是其图象的一条对称轴,则下面各式中符合条件的解析式为()Ay4sinBy2sin2Cy2sin2Dy2sin2(1)A(2)D(1)由图象知,故T,因此2.又图象的一个最高点坐标为,所以A2,且22k(kZ),故2k(kZ),结合选项可知y2sin.故选A.(2)由函数yAsin(x)b的最大值为4,最小值为0,可知b2,A2.由函数的最小正周期为,可知,得4.由直线x是其图象的一条对称轴,可知4k,kZ,从

7、而k,kZ,故满足题意的是y2sin2.规律方法确定yAsin(x)b(A0,0)的步骤和方法(1)求A,b:确定函数的最大值M和最小值m,则A,b;(2)求:确定函数的周期T,则可得;(3)求:常用的方法有:代入法:把图象上的一个已知点代入(此时A,b已知)或代入图象与直线yb的交点求解(此时要注意交点在上升区间上还是在下降区间上)五点法:确定值时,往往以寻找“五点法”中的某一个点为突破口“第一点”(即图象上升时与x轴的交点)时x0;“第二点”(即图象的“峰点”)时x;“第三点”(即图象下降时与x轴的交点)时x;“第四点”(即图象的“谷点”)时x;“第五点”时x2.变式训练2(2017石家庄

8、一模)函数f(x)Asin(x)(A0,0)的部分图象如图343所示,则f的值为()图343ABCD1D由图象可得A,最小正周期T4,则2.又fsin,解得2k(kZ),即k1,则f(x)sin,fsinsin1,故选D.函数yAsin(x)图象与性质的应用(2016天津高考)已知函数f(x)4tan xsincos.(1)求f(x)的定义域与最小正周期;(2)讨论f(x)在区间上的单调性解(1)f(x)的定义域为.2分f(x)4tan xcos xcos4sin xcos4sin x2sin xcos x2sin2xsin 2x(1cos 2x)sin 2xcos 2x2sin.所以f(x)

9、的最小正周期T.6分(2)令z2x,则函数y2sin z的单调递增区间是,kZ.由2k2x2k,得kxk,kZ.8分设A,BxkZ,易知AB.所以当x时,f(x)在区间上单调递增,在区间上单调递减.12分规律方法讨论函数的单调性,研究函数的周期性、奇偶性与对称性,都必须首先利用辅助角公式,将函数化成一个角的一种三角函数变式训练3设函数f(x)sin2xsin xcos x(0),且yf(x)图象的一个对称中心到最近的对称轴的距离为. 【导学号:31222119】(1)求的值;(2)求f(x)在区间上的最大值和最小值解(1)f(x)sin2xsin xcos xsin 2xcos 2xsin 2

10、xsin.3分因为图象的一个对称中心到最近的对称轴的距离为,又0,所以4,因此1.5分(2)由(1)知f(x)sin.6分当x时,2x,所以sin1,则1f(x).10分故f(x)在区间上的最大值和最小值分别为,1.12分三角函数模型的简单应用某实验室一天的温度(单位:)随时间t(单位:h)的变化近似满足函数关系:f(t)10costsint,t0,24)(1)求实验室这一天的最大温差;(2)若要求实验室温度不高于11 ,则在哪段时间实验室需要降温?解(1)因为f(t)102102sin,2分又0t24,所以t,1sin1.4分当t2时,sin1;当t14时,sin1.于是f(t)在0,24)

11、上取得最大值12,取得最小值8.故实验室这一天最高温度为12 ,最低温度为8 ,最大温差为4 .6分(2)依题意,当f(t)11时实验室需要降温由(1)得f(t)102sin,故有102sin11,即sin.9分又0t24,因此t,即10t18.故在10时至18时实验室需要降温.12分规律方法1.三角函数模型在实际中的应用体现在两个方面:一是用已知的模型去分析解决实际问题,二是把实际问题抽象转化成数学问题,建立三角函数模型解决问题,其关键是合理建模2建模的方法是认真审题,把问题提供的“条件”逐条地“翻译”成“数学语言”,这个过程就是数学建模的过程变式训练4(2015陕西高考)如图344,某港口

12、一天6时到18时的水深变化曲线近似满足函数y3sink.据此函数可知,这段时间水深(单位:m)的最大值为()图344A5B6C8D10C根据图象得函数的最小值为2,有3k2,k5,最大值为3k8.思想与方法1由图象确定函数解析式由图象确定yAsin(x)时,的确定是关键,尽量选择图象的最值点代入;若选零点代入,应根据图象升降找“五点法”作图中第一个零点2对称问题函数yAsin(x)的图象与x轴的每一个交点均为其对称中心,经过该图象上坐标为(x,A)的点与x轴垂直的每一条直线均为其图象的对称轴,这样的最近两点间横坐标的差的绝对值是半个周期(或两个相邻对称中心的距离)易错与防范1要弄清楚是平移哪个

13、函数的图象,得到哪个函数的图象2要注意平移前后两个函数的名称是否一致,若不一致,应先利用诱导公式化为同名函数3由ysin x的图象变换到yAsin(x)的图象,先相位变换再周期变换(伸缩变换),平移的量是|个单位;而先周期变换(伸缩变换)再相位变换,平移的量是(0)个单位原因是相位变换和周期变换都是针对x而言的4函数yAsin(x)在xm,n上的最值可先求tx的范围,再结合图象得出yAsin t的值域课时分层训练(二十)函数yAsin(x)的图象A组基础达标(建议用时:30分钟)一、选择题1为了得到函数ysin 3xcos 3x的图象,可以将函数ycos 3x的图象() 【导学号:312221

14、20】A向右平移个单位B向右平移个单位C向左平移个单位D向左平移个单位A由于ysin 3xcos 3xsin,ycos 3xsin,因此只需将ycos 3x的图象向右平移个单位,即可得到ysinsin的图象2(2017成都二诊)将函数f(x)cos图象上所有点的横坐标缩短为原来的,纵坐标不变,得到函数g(x)的图象,则函数g(x)的解析式为()Ag(x)cosBg(x)cosCg(x)cosDg(x)cosB由图象变换规则可得g(x)cos,故选B.3函数f(x)2sin(x)的部分图象如图345所示,则,的值分别是()图345A2,B2,C4,D4,A,T.由T,得2.22k,kZ,2k.又

15、,.4已知函数f(x)sin xcos x(0),yf(x)的图象与直线y2的两个相邻交点的距离等于,则f(x)的单调递增区间是() 【导学号:31222121】A.,kZB.,kZC.,kZD.,kZC由题设知f(x)2sin,f(x)的周期为T,所以2,由2k2x2k,kZ得,kxk,kZ.5(2016全国卷)若将函数y2sin 2x的图象向左平移个单位长度,则平移后图象的对称轴为()Ax(kZ)Bx(kZ)Cx(kZ)Dx(kZ)B将函数y2sin 2x的图象向左平移个单位长度,得到函数y2sin22sin的图象由2xk(kZ),得x(kZ),即平移后图象的对称轴为x(kZ)二、填空题6

16、若函数f(x)sin(0)的最小正周期为,则f_. 【导学号:31222122】0由f(x)sin(0)的最小正周期为,得4,所以fsin0.7已知函数ycos x与ysin(2x)(0),它们的图象有一个横坐标为的交点,则的值是_由题意cos sin,即sin,k(1)k(kZ)因为0,所以.8某城市一年中12个月的平均气温与月份的关系可近似地用三角函数yaAcos(x1,2,3,12)来表示,已知6月份的月平均气温最高,为28 ,12月份的月平均气温最低,为18 ,则10月份的平均气温值为_ .205依题意知,a23,A5,y235cos,当x10时,y235cos20.5.三、解答题9已

17、知函数f(x)sin1.(1)求它的振幅、最小正周期、初相;(2)画出函数yf(x)在上的图象解(1)振幅为,最小正周期T,初相为.5分(2)图象如图所示12分10已知函数yAsin(x)(A0,0)的图象过点P,图象上与点P最近的一个最高点是Q.(1)求函数的解析式;(2)求函数f(x)的递增区间解(1)依题意得A5,周期T4,2分2.故y5sin(2x),又图象过点P,4分5sin0,由已知可得0,y5sin.6分(2)由2k2x2k,kZ,得kxk,kZ,10分故函数f(x)的递增区间为(kZ).12分B组能力提升(建议用时:15分钟)1(2016北京高考)将函数ysin图象上的点P向左

18、平移s(s0)个单位长度得到点P.若P位于函数ysin 2x的图象上,则()At,s的最小值为Bt,s的最小值为Ct,s的最小值为Dt,s的最小值为A因为点P在函数ysin的图象上,所以tsinsin.所以P.将点P向左平移s(s0)个单位长度得P.因为P在函数ysin 2x的图象上,所以sin 2,即cos 2s,所以2s2k或2s2k,即sk或sk(kZ),所以s的最小值为.2若函数ycos 2xsin 2xa在上有两个不同的零点,则实数a的取值范围为_ 【导学号:31222123】(2,1由题意可知y2sina,该函数在上有两个不同的零点,即ya,y2sin在上有两个不同的交点结合函数的图象可知1a2,所以2a1.3函数f(x)Asin(x)的部分图象如图346所示图346(1)求f(x)的解析式;(2)设g(x)2,求函数g(x)在x上的最大值,并确定此时x的值解(1)由题图知A2,则4,2分.又f2sin2sin0,sin0.4分0,0,即,f(x)的解析式为f(x)2sin.6分(2)由(1)可得f2sin2sin,8分g(x)2422cos.10分x,3x,当3x,即x时,g(x)max4.12分

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3