ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:360.50KB ,
资源ID:337010      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-337010-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2021届高考数学一轮复习 第8章 立体几何 第7节 立体几何中的向量方法课时跟踪检测(理含解析).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2021届高考数学一轮复习 第8章 立体几何 第7节 立体几何中的向量方法课时跟踪检测(理含解析).doc

1、第八章立体几何第七节立体几何中的向量方法A级基础过关|固根基|1.(2019年全国卷)如图,长方体ABCDA1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BEEC1.(1)证明:BE平面EB1C1;(2)若AEA1E,求二面角BECC1的正弦值解:(1)证明:由已知得,B1C1平面ABB1A1,BE平面ABB1A1,故B1C1BE.又BEEC1,B1C1EC1C1,所以BE平面EB1C1.(2)由(1)知BEB190.由题设知RtABERtA1B1E,所以AEB45,故AEAB,AA12AB以D为坐标原点,的方向为x轴正方向,|为单位长,建立如图所示的空间直角坐标系Dxyz,则C(0

2、,1,0),B(1,1,0),C1(0,1,2),E(1,0,1),(1,0,0),(1,1,1),(0,0,2)设平面EBC的法向量为n(x,y,z),则即令y1,则x0,z1,所以n(0,1,1)设平面ECC1的法向量为m(x1,y1,z1),则即所以可取m(1,1,0)于是cosn,m.所以,二面角BECC1的正弦值为.2(2019届太原市一模)如图,在四棱锥PABCD中,底面ABCD是边长为的正方形,PABD(1)求证:PBPD;(2)若E,F分别为PC,AB的中点,EF平面PCD,求直线PB与平面PCD所成角的大小解:(1)证明:如图,连接AC,交BD于点O,连接PO,四边形ABCD

3、是正方形,ACBD,OBOD又PABD,PA平面PAC,AC平面PAC,PAACA,BD平面PAC又PO平面PAC,BDPO.又OBOD,PBPD(2)设PD的中点为Q,连接AQ,EQ,E为PC的中点,EQCD,EQCD又AFCD,ABCD,F为AB的中点,AFABCD,EQAF,EQAF,四边形AQEF为平行四边形,EFAQ.EF平面PCD,AQ平面PCD又PD平面PCD,AQPDQ是PD的中点,APAD.AQ平面PCD,CD平面PCD,AQCD又ADCD,AQADA,CD平面PAD又PA平面PAD,CDPA.PABD,BDCDD,BD平面ABCD,CD平面ABCD,PA平面ABCD以A为坐

4、标原点,以AB,AD,AP所在直线分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系,则A(0,0,0),B(,0,0),P(0,0,),Q,(,0,)AQ平面PCD,为平面PCD的一个法向量,cos,.设直线PB与平面PCD所成的角为,则sin |cos,|,直线PB与平面PCD所成的角为.3(2020届广州四校联考)如图1,已知三棱锥PABC,其展开图如图2所示,其中四边形ABCD是边长等于的正方形,ABE和BCF均为正三角形(1)证明:平面PAC平面ABC;(2)若M是PA的中点,求二面角PBCM的余弦值解:(1)证明:如图,设AC的中点为O,连接BO,PO.由题意,得PAPBPC,P

5、O1,AOBOCO1.因为在PAC中,PAPC,O为AC的中点,所以POAC因为在POB中,PO1,OB1,PB,所以PO2OB2PB2,所以POOB因为ACOBO,AC,OB平面ABC,所以PO平面ABC,又PO平面PAC,所以平面PAC平面ABC(2)由(1)可知POOB,POAC,OBAC,所以以O为坐标原点,OC,OB,OP所在直线分别为x轴,y轴,z轴建立如图所示的空间直角坐标系Oxyz,则O(0,0,0),C(1,0,0),B(0,1,0),A(1,0,0),P(0,0,1),M,0,所以(1,1,0),(1,0,1),0,.设平面MBC的法向量为m(x1,y1,z1),则令x11

6、,得y11,z13,即m(1,1,3)为平面MBC的一个法向量设平面PBC的法向量为n(x2,y2,z2),则令x21,得y21,z21,即n(1,1,1)为平面PBC的一个法向量cosn,m.由图可知,二面角PBCM为锐角,故其余弦值为.B级素养提升|练能力|4.(2019届辽宁五校联考)如图,在四棱锥EABCD中,底面ABCD为直角梯形,其中CDAB,BCAB,平面ABE平面ABCD,且ABAEBE2BC2CD2,动点F在棱AE上,且EFFA.(1)试探究的值,使CE平面BDF,并给予证明;(2)当1时,求直线CE与平面BDF所成角的正弦值解:(1)当时,CE平面BDF.证明如下:连接AC

7、交BD于点G,连接GF,CDAB,AB2CD,.EFFA,GFCE.又CE平面BDF,GF平面BDF,CE平面BDF.(2)取AB的中点O,连接EO,则EOAB,平面ABE平面ABCD,平面ABE平面ABCDAB,且EOAB,EO平面ABCD连接DO,BOCD,且BOCD1,四边形BODC为平行四边形,BCDO,又BCAB,ABOD,则OD,OA,OE两两垂直,以OD,OA,OE所在直线分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系Oxyz,则O(0,0,0),A(0,1,0),B(0,1,0),D(1,0,0),C(1,1,0),E(0,0,)当1时,有,F,(1,1,0),(1,1,

8、),.设平面BDF的法向量为n(x,y,z),则有即令z,得y1,x1,则n(1,1,)为平面BDF的一个法向量设直线CE与平面BDF所成的角为,则sin |cos,n|,故直线CE与平面BDF所成角的正弦值为.5(2020届大同调研)在如图所示的多面体中,EF平面AEB,AEEB,ADEF,EFBC,BC2AD4,EF3,AEBE2,G是BC的中点(1)求证:AB平面DEG;(2)求二面角CDFE的余弦值解:(1)证明:ADEF,EFBC,ADBC又BC2AD,G是BC的中点,ADBG,四边形ADGB是平行四边形,ABDG.AB平面DEG,DG平面DEG,AB平面DEG.(2)EF平面AEB

9、,AE平面AEB,BE平面AEB,EFAE,EFBE,又AEEB,EB,EF,EA两两垂直以点E为坐标原点,EB,EF,EA所在直线分别为x轴,y轴,z轴建立如图所示的空间直角坐标系Exyz,则E(0,0,0),B(2,0,0),C(2,4,0),F(0,3,0),D(0,2,2)由已知得(2,0,0)是平面EFDA的一个法向量设平面DCF的法向量为n(x,y,z),则(0,1,2),(2,1,0),令z1,得y2,x1,n(1,2,1)为平面DCF的一个法向量设二面角CDFE的大小为,则|cos |cosn,|.易知二面角CDFE为钝二面角,二面角CDFE的余弦值为.6(2020届四川五校联

10、考)如图,在四棱锥PABCD中,ABDC,ADC,ABADCD2,PDPB,PDBC(1)求证:平面PBC平面PBD;(2)在线段PC上是否存在点M,使得平面ABM与平面PBD所成的锐二面角为?若存在,求出的值;若不存在,说明理由解:(1)证明:因为ABDC,ABADCD2,ADC,所以CD4,BD2,BDC.在BCD中,根据余弦定理得BC2,所以CD2BD2BC2,故BCBD又BCPD,PDBDD,BD,PD平面PBD,所以BC平面PBD又BC平面PBC,所以平面PBC平面PBD(2)由(1)得平面ABCD平面PBD,设E为BD的中点,连接PE,因为PBPD,所以PEBD,PE2.又平面ABCD平面PBD,平面ABCD平面PBDBD,所以PE平面ABCD如图,以A为坐标原点,以,的方向和垂直平面ABCD的向量的方向分别为x轴,y轴,z轴正方向,建立空间直角坐标系Axyz,则A(0,0,0),B(0,2,0),C(2,4,0),P(1,1,2)假设存在M(a,b,c),设(01),即,所以M(2,43,2)易得平面PBD的一个法向量为(2,2,0)(0,2,0),(2,43,2),设n(x,y,z)为平面ABM的法向量,则得不妨取n(2,0,2)因为平面PBD与平面ABM所成的锐二面角为,所以,解得或2(不合题意舍去)故存在点M满足条件,.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3