1、第二章 平面向量2.1 平面向量的实际背景及基本概念A级基础巩固一、选择题1在下列判断中,正确的是()长度为0的向量都是零向量;零向量的方向都是相同的;单位向量的长度都相等;单位向量都是同方向;任意向量与零向量都共线ABC D解析:由定义知正确,由于零向量的方向是任意的,故两个零向量的方向是否相同不确定,故不正确显然、正确,不正确答案:D2下列命题中,正确的是()A|a|1a1B|a|b|且ababCababDa0|a|0解析:两共线向量的模相等,但两向量不一定相等,0与任一向量平行答案:C3如图所示,在O中,向量、是()A有相同起点的向量B共线向量C模相等的向量D相等的向量答案:C4数轴上点
2、A、B分别对应1、2,则向量的长度是()A1 B2C1 D3解析:易知|2(1)3.答案:D5若|且,则四边形ABCD的形状为()A平行四边形 B矩形C菱形 D等腰梯形解析:由知四边形为平行四边形;由|知四边形ABCD为菱形答案:C二、填空题6已知A,B,C是不共线的三点,向量m与向量是平行向量,与是共线向量,则m_解析:因为A,B,C三点不共线,所以与不共线,又因为m且m,所以m0.答案:07.如图所示,以12方格纸中的格点(各线段的交点)为始点和终点的向量中,与相等的向量有_解析:因为各方格均为正方形,则有.答案:,8如果在一个边长为5的正ABC中,一个向量所对应的有向线段为(其中D在边B
3、C上运动),则向量长度的最小值为_解析:结合图形进行判断求解(图略),根据题意,在正ABC中,有向线段AD长度最小时,AD应与边BC垂直,有向线段AD长度的最小值为正ABC的高,为.答案:三、解答题9.如图所示,D,E,F分别是正三角形ABC各边的中点(1)写出图中所示向量与向量长度相等的向量;(2)写出图中所示向量与向量相等的向量;(3)分别写出图中所示向量与向量,共线的向量解:(1)与长度相等的向量是,;(2)与相等的向量是,;(3)与共线的向量是,;与共线的向量是,.10.如图所示,两人分别从A村出发,其中一人沿北偏东60方向行走了1 km到了B村,另一人沿北偏西30方向行走了 km到了
4、C村,问B、C两村相距多远?B村在C村的什么方向上?解:由题可知|1,|,CAB90,则|2,又tanACB,所以ACB30,故B、C两村间的距离为2 km,B村在C村的南偏东60的方向上B级能力提升1已知点O固定,且|2,则A点构成的图形是()A一个点 B一条直线C一个圆 D不能确定解析:因为|2,所以终点A到起点O的距离为2.又因为O点固定,所以A点的轨迹是以O为圆心,2为半径的圆答案:C2给出下列四个条件:ab;|a|b|;a与b方向相反;|a|0或|b|0,其中能使ab成立的条件是_(填序号)解析:因为a与b为相等向量,所以ab,即能够使ab成立;由于|a|b|并没有确定a与b的方向,即不能够使ab成立;因为a与b方向相反时,ab,即能够使ab成立;因为零向量与任意向量共线,所以|a|0或|b|0时,ab能够成立故使ab成立的条件是.答案:3如图的方格纸由于若干个边长为1的小正方体并在一起组成,方格纸中有两个定点A,B.点C为小正方形的顶点,且|.(1)画出所有的向量;(2)求|的最大值与最小值解:(1)画出所有的向量,如图所示(2)由(1)所画的图知,当点C位于点C1或C2时,|取得最小值 ;当点C位于点C5或C6时,|取得最大值 ;所以|的最大值为,最小值为.