1、大题考法专训(二) 数列A级中档题保分练1已知数列an为等比数列,首项a14,数列bn满足bnlog2an,且b1b2b312.(1)求数列an的通项公式;(2)令cnan,求数列cn的前n项和Sn.解:(1)由bnlog2an和b1b2b312,得log2(a1a2a3)12,a1a2a3212.设等比数列an的公比为q,a14,a1a2a344q4q226q3212,解得q4,an44n14n.(2)由(1)得bnlog24n2n,cn4n4n4n.设数列的前n项和为An,则An1,设数列4n的前n项和为Bn,则Bn(4n1),Sn(4n1)2已知首项为2的数列an的前n项和为Sn,Sn,
2、设bnlog2an.(1)求数列an的通项公式;(2)判断数列bn是否为等差数列,并说明理由;(3)求数列的前n项和Tn.解:(1)依题意得a12,则n1时,S1a1,a28.n2时,Sn1,则anSnSn1,整理得4.又4,数列an是首项为2,公比为4的等比数列,an24n122n1.(2)bnlog2anlog222n12n1,则bn1bn2n1(2n1)2,且b11,数列bn是等差数列(3)由(2)得bn2n1,Tn.3(2019福州模拟)已知数列an的前n项和Sn3n28n,bn是等差数列,且anbnbn1.(1)求数列bn的通项公式;(2)令cn,求数列cn的前n项和Tn.解:(1)
3、因为Sn3n28n,所以当n2时,anSnSn13n28n3(n1)28(n1)6n5.当n1时,a1S111也符合上式,所以an6n5,nN*.于是,bn1bnan6n5.因为bn是等差数列,所以可设bnknt(k,t均为常数),则有k(n1)tknt6n5,即2knk2t6n5对任意的nN*恒成立,所以解得故bn3n1.(2)因为an6n5,bn3n1,所以cn2n(6n6)于是,Tn122182224232n(6n6),所以2Tn1222182324242n6n2n1(6n6),得,Tn246(22232n)2n1(6n6)2462n1(6n6)2n16n,故Tn2n16n2n23n.B
4、级拔高题满分练1(2020届高三长沙摸底)已知数列an的首项a13,a37,且对任意的nN*,都有an2an1an20,数列bn满足bna2n1,nN*.(1)求数列an,bn的通项公式;(2)求使b1b2bn2 019成立的最小正整数n的值解:(1)令n1,得a12a2a30,解得a25.又由an2an1an20,知an2an1an1ana2a12,故数列an是首项a13,公差d2的等差数列,于是an2n1,bna2n12n1.(2)由(1)知,bn2n1.于是b1b2bn(21222n)nn2n1n2.令f(n)2n1n2,易知f(n)是关于n的单调递增函数,又f(9)210921 031
5、,f(10)2111022 056,故使b1b2bn2 019成立的最小正整数n的值是10.2已知an是各项都为正数的数列,其前n项和为Sn,且Sn为an与的等差中项(1)求数列an的通项公式;(2)设bn,求bn的前n项和Tn.解:(1)由题意知,2Snan,即2Snana1,当n1时,由式可得S11;当n2时,anSnSn1,代入式,得2Sn(SnSn1)(SnSn1)21,整理得SS1.所以S是首项为1,公差为1的等差数列,S1n1n.因为an的各项都为正数,所以Sn,所以anSnSn1(n2)又a1S11,所以an.(2)bn(1)n(),当n为奇数时,Tn1(1)()()();当n为
6、偶数时,Tn1(1)()()().所以bn的前n项和Tn(1)n.3(2019天津高考)设an是等差数列,bn是等比数列,公比大于0.已知a1b13,b2a3,b34a23.(1)求an和bn的通项公式(2)设数列cn满足cn求a1c1a2c2a2nc2n(nN*)解:(1)设等差数列an的公差为d,等比数列bn的公比为q.依题意,得解得故an33(n1)3n,bn33n13n.所以数列an的通项公式为an3n,bn的通项公式为bn3n.(2)a1c1a2c2a2nc2n(a1a3a5a2n1)(a2b1a4b2a6b3a2nbn)(631123218336n3n)3n26(131232n3n)记Tn131232n3n,则3Tn132233n3n1,得,2Tn332333nn3n1n3n1.所以a1c1a2c2a2nc2n3n26Tn3n23(nN*)