1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期末综合训练试题 (B)卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、下列图形中,既是轴对称图形,又是中心对称图形的是()ABCD2、
2、已知关于x的一元二次方程标有两个不相等的实数根,则实数k的取值范围是()ABC且D3、已知学校航模组设计制作的火箭升空高度h(m)与飞行时间t(s)满足函数表达式ht224t1,则下列说法中正确的是()A点火后1s和点火后3s的升空高度相同B点火后24s火箭落于地面C火箭升空的最大高度为145mD点火后10s的升空高度为139m4、将一元二次方程化成(a,b为常数)的形式,则a,b的值分别是()A,21B,11C4,21D,695、把方程x2+2x5(x2)化成ax2+bx+c0的形式,则a,b,c的值分别为()A1,3,2B1,7,10C1,5,12D1,3,10二、多选题(5小题,每小题4
3、分,共计20分)1、如图,二次函数yax2+bx+c的图象经过点A(4,0),其对称轴为直线x1,下列结论正确的是()Aa+b+c0Babc0C2a+b0D若P(6,y1),Q(m,y2)是抛物线上两点,且y1y2,则6m42、抛物线y=ax2+bx+c(a0)的顶点为D(1,2),与x轴的一个交点A在点(3,0)和(2,0)之间,其部分图象如图,则以下结论中正确的是() 线 封 密 内 号学级年名姓 线 封 密 外 Ab24ac0B当x1时,y随x增大而减小Ca+b+c0D若方程ax2+bx+c-m=0没有实数根,则m2E3a+c03、已知抛物线上部分点的横坐标x与纵坐标y的对应值如表所示,
4、对于下列结论:x-10123y30-1m3抛物线开口向下;抛物线的对称轴为直线;方程的两根为0和2;当时,x的取值范围是或正确的是()ABCD4、如图在四边形中,为的中点,以点为圆心、长为半径作圆,恰好使得点在圆上,连接,若,则下列说法中正确的是()A是劣弧的中点B是圆的切线CD5、二次函数(a,b,c是常数,)的自变量x与函数值y的部分对应值如下表:x21012tm22n已知则下列结论中,正确的是()AB和是方程的两个根CD(s取任意实数)第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图,已知P是函数y1图象上的动点,当点P在x轴上方时,作PHx轴于点H,连接PO
5、小华用几何画板软件对PO,PH的数量关系进行了探讨,发现POPH是个定值,则这个定值为 _ 线 封 密 内 号学级年名姓 线 封 密 外 2、如图,二次函数y=ax2+bx+c的部分图象与y轴的交点为(0,3),它的对称轴为直线x=1,则下列结论中:c=3;2a+b=0;8a-b+c0;方程ax2+bx+c=0的其中一个根在2,3之间,正确的有_(填序号)3、抛物线yax2+bx+c(a0)的部分图象如图所示,其与x轴的一个交点坐标为(3,0),对称轴为x1,则当y0时,x的取值范围是_4、如图,抛物线的图象与坐标轴交于点、,顶点为,以为直径画半圆交轴的正半轴于点,圆心为,是半圆上的一动点,连
6、接,是的中点,当沿半圆从点运动至点时,点运动的路径长是_5、如图,将半径为的圆形纸片沿一条弦折叠,折叠后弧的中点与圆心重叠,则弦的长度为_四、解答题(5小题,每小题8分,共计40分)1、用配方法解方程:2、如图,AB是O的直径,弦CDAB于点E,点PO上,1=C(1)求证:CBPD;(2)若ABC=55,求P的度数3、解下列方程: 线 封 密 内 号学级年名姓 线 封 密 外 (1);(2)4、冰墩墩是2022年北京冬季奥运会的吉祥物冰墩墩以熊猫为原型设计,寓意创造非凡、探索未来某超市用2400元购进一批冰墩墩玩偶出售若进价降低20%,则可以多买50个市场调查发现:当每个冰墩墩玩偶的售价是20
7、元时,每周可以销售200个;每涨价1元,每周少销售10个(1)求每个冰墩墩玩偶的进价;(2)设每个冰墩墩玩偶的售价是x元(x是大于20的正整数),每周总利润是w元求w关于x的函数解析式,并求每周总利润的最大值;当每周总利润不低于1870元时,求每个冰墩墩玩偶售价x的范围5、阅读下面内容,并答题:我们知道,计算n边形的对角线条数公式为n(n3)如果一个n边形共有20条对角线,那么可以得到方程n(n3)20解得n8或n5(舍去),这个n边形是八边形根据以上内容,问:(1)若一个多边形共有9条对角线,求这个多边形的边数;(2)小明说:“我求得一个n边形共有10条对角线”,你认为小明同学的说法正确吗?
8、为什么?-参考答案-一、单选题1、C【解析】【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解【详解】解:A是轴对称图形,不是中心对称图形,故本选项不符合题意;B既不是轴对称图形,又不是中心对称图形,故本选项不符合题意;C既是轴对称图形,又是中心对称图形,故本选项符合题意;D不是轴对称图形,是中心对称图形,故本选项不符合题意故选:C【考点】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合2、C【解析】【分析】由一元二次方程定义得出二次项系数k0;由方程有两个不相等的实数根,得
9、出“0”,解这两个不等式即可得到k的取值范围【详解】解:由题可得:,解得:且;故选:C【考点】本题考查了一元二次方程的定义和根的判别式,涉及到了解不等式等内容,解决本题的关键是能读懂题意并牢记一元二次方程的概念和根的判别式的内容,能正确求出不等式(组)的解集等,本题对学生的计算能力有一定的要求3、C【解析】 线 封 密 内 号学级年名姓 线 封 密 外 【分析】分别求出t=1、3、24、10时h的值可判断A、B、D三个选项,将解析式配方成顶点式可判断C选项【详解】解:A、当t=1时,h=24;当t=3时,h=64;所以点火后1s和点火后3s的升空高度不相同,此选项错误;B、当t=24时,h=1
10、0,所以点火后24s火箭离地面的高度为1m,此选项错误;C、由ht224t1=(t-12)2+145知火箭升空的最大高度为145m,此选项正确;D、当t=10时,h=141m,此选项错误;故选:C【考点】本题主要考查二次函数的应用,解题的关键是熟练掌握二次函数的性质4、A【解析】【分析】根据配方法步骤解题即可【详解】解:移项得,配方得,即,a=-4,b=21故选:A【考点】本题考查了配方法解一元二次方程,解题关键是配方:在二次项系数为1时,方程两边同时加上一次项系数一半的平方5、D【解析】【分析】先把x2+2x5(x2)化简,然后根据一元二次方程的一般形式即可得到a、b、c的值【详解】解:x2
11、+2x5(x2),x2+2x5x10,x2+2x5x+100,x23x+100,则a1,b3,c10,故选:D【考点】此题主要考查了一元二次方程化为一般形式,熟练掌握一元二次方程的一般形式是解题的关键二、多选题1、ABD【解析】【分析】根据题意可得点A(4,0)关于对称轴的对称点 ,从而得到当 时, ,再由 ,可得在对称轴右侧 随 的增大而增大,从而得到当 时, ;根据图象可得 , ,可得 ;再由 ,可得;然后根据P(6,y1) 线 封 密 内 号学级年名姓 线 封 密 外 关于对称轴的对称点 ,可得当y1y2时,6m4,即可求解【详解】解:二次函数yax2+bx+c的图象经过点A(4,0),
12、其对称轴为直线x1,点A(4,0)关于对称轴的对称点 ,即当 时, ,抛物线开口向上, ,在对称轴右侧 随 的增大而增大,当 时, ,故A正确;抛物线与 交于负半轴, ,对称轴为直线x1, , ,即 , ,故B正确; ,故C错误;P(6,y1)关于对称轴的对称点 ,当y1y2时,6m4,故D正确故选:ABD【考点】本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质,并利用数形结合思想解答是解题的关键2、BCDE【解析】【分析】利用图象信息,以及二次函数的性质即可一一判断【详解】二次函数与x轴有两个交点,b-4ac0,故A错误,观察图象可知:当x-1时,y随x增大而减小,故B正确,
13、抛物线与x轴的另一个交点为在(0,0)和(1,0)之间,x=1时,y=a+b+c0,故C正确,当m2时,抛物线与直线y=m没有交点,方程ax+bx+c-m=0没有实数根,故D正确,对称轴x=-1= ,b=2a,a+b+c0,3a+c0,故E正确,故答案为BCDE【考点】本题考查了二次函数图象与系数的关系,根的判别式、抛物线与x轴的交点等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型3、CD 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】根据表格可知直线x1是抛物线对称轴,此时有最小值,与x轴交点坐标为(0,0)(2,0)据此可判断,根据与x轴交点坐标结合开口方向可
14、判断【详解】解:从表格可以看出,函数的对称轴是直线x1,顶点坐标为(1,1),此时有最小值函数与x轴的交点为(0,0)、(2,0),抛物线yax2+bx+c的开口向上故错误;抛物线yax2+bx+c的对称轴为直线x1故错误;方程ax2+bx+c0的根为0和2故正确;当y0时,x的取值范围是x0或x2故正确;故选CD【考点】本题考查了二次函数的图象和性质解题的关键在于根据表格获取正确的信息4、ABC【解析】【分析】直接利用圆周角定理以及结合圆心角、弧、弦的关系、切线的判定方法、平行线的判定方法、四边形内角和分别分析得出答案【详解】解:A.BAD=25,EAD=25,DAB=EAD,故此选项正确;
15、B.BAD=25,OA=OD,ADO=BAD=25ADC=115,ODC=ADC-ADC=115-25=90,CD是O的切线,故此选项正确;CEAD=ADO=25AEDO,故此选项正确;D,OBC=360-DAB-ADC-C=360-25-115-90=130,故此选项错误故选择ABC【考点】此题主要考查了切线的判定以及圆周角与弧的关系、四边形内角和、平行线的判定方法等知识,正确掌握相关判定方法是解题关键5、BC 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】由表中数据,结合二次函数的对称性,可知,二次函数的对称轴为,结合抛物线对称轴为:,得出,由,结合二次函数图象性质,逐一分
16、析各个选项,即可作出相应的判断【详解】解:由表格数据可知,当时,将点代入中,可得由表格数据可知,当时,;当时,;即抛物线对称轴为:,抛物线对称轴为:,化简得,抛物线解析式化为,将点代入中,化简得,解得,故A选项说法错误,不符合题意;二次函数对称轴为,和时,对应的函数值相等,时,对应函数值为,和是方程的两个根,故B选项说法正确,符合题意;由表中数据可知,二次函数过点和,将点和分别代入二次函数解析式中,可得,故,C选项说法正确,符合题意;,即, 线 封 密 内 号学级年名姓 线 封 密 外 ,s取任意实数,故D选项说法错误,不符合题意;故选:BC【考点】本题考查了二次函数的图象性质,二次函数与一元
17、二次方程的关系,深入理解函数概念,熟练掌握二次函数图象性质是解题的关键三、填空题1、2【解析】【分析】设p(x,x2-1),则OH=|x|,PH=|x2-1|,因点P在x轴上方,所以x2-10,由勾股定理求得OP=x2+1,即可求得OP-PH=2,得出答案【详解】解:设p(x,x2-1),则OH=|x|,PH=|x2-1|,当点P在x轴上方时,x2-10,PH=|x2-1|=x2-1,在RtOHP中,由勾股定理,得OP2=OH2+PH2=x2+(x2-1)2=(x2+1)2,OP=x2+1,OP-PH=(x2+1)-(x2-1)=2,故答案为:2【考点】本题考查二次函数图象上点的坐标特征,勾股
18、定理,利用坐标求线段长度是解题的关键2、【解析】【分析】由二次函数y=ax2+bx+c的部分图象与y轴的交点为(0,3),即可判断;由抛物线的对称轴为直线x=1,即可判断;抛物线与x轴的一个交点在-1到0之间,抛物线对称轴为直线x=1,即可判断,由抛物线开口向下,得到a0,再由当x=-1时,即可判断【详解】解:二次函数y=ax2+bx+c的部分图象与y轴的交点为(0,3),c=3,故正确;抛物线的对称轴为直线x=1,即,故正确;抛物线与x轴的一个交点在-1到0之间,抛物线对称轴为直线x=1,抛物线与x轴的另一个交点在2到3之间,故正确;抛物线开口向下,a0,当x=-1时,即,故错误, 线 封
19、密 内 号学级年名姓 线 封 密 外 故答案为:【考点】本题主要考查了二次函数图像的性质,解题的关键在于能够熟练掌握二次函数图像的性质3、3x1【解析】【分析】根据抛物线与x轴的一个交点坐标和对称轴,由抛物线的对称性可求抛物线与x轴的另一个交点,再根据抛物线的增减性可求当y0时,x的取值范围【详解】解:抛物线yax2+bx+c(a0)与x轴的一个交点为(3,0),对称轴为x1,抛物线与x轴的另一个交点为(1,0),由图象可知,当y0时,x的取值范围是3x1故答案为:3x1【考点】本题考查了二次函数的性质和数形结合能力,熟练掌握并灵活运用是解题的关键4、【解析】【分析】先求出A、B、E的坐标,然
20、后求出半圆的直径为4,由于E为定点,P是半圆AB上的动点,N为EP的中点,所以N的运动路经为直径为2的半圆,计算即可.【详解】解:,点E的坐标为(1,-2),令y=0,则,解得,A(-1,0),B(3,0),AB=4,由于E为定点,P是半圆AB上的动点,N为EP的中点,所以N的运动路经为直径为2的半圆,如图,点运动的路径长是.【考点】本题属于二次函数和圆的综合问题,考查了运动路径的问题,熟练掌握二次函数和圆的基础是解题的关键.5、【解析】【分析】连接OC交AB于点D,再连接OA根据轴对称的性质确定,OD=CD;再根据垂径定理确定AD=BD;再根据勾股定理求出AD的长度,进而即可求出AB的长度
21、线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:如下图所示,连接OC交AB于点D,再连接OA折叠后弧的中点与圆心重叠,OD=CDAD=BD圆形纸片的半径为10cm,OA=OC=10cmOD=5cmcmBD=cmcm故答案为:【考点】本题考查轴对称的性质,垂径定理,勾股定理,综合应用这些知识点是解题关键四、解答题1、x1+3,x23【解析】【分析】根据配方法,两边配上一次项系数一半的平方即可得到,然后利用直接开平方法求解【详解】解:x2-2x4,x2-2x+54+5,即(x-)29,x-3,x1+3,x23【考点】本题主要考查配方法解一元二次方程,掌握配方法解一元二次方程的方法与步骤是
22、解题关键2、(1)证明见解析;(2)35【解析】【详解】试题分析:(1)要证明CBPD,只要证明1=P;由1=C,P=C,可得1=P,即可解决问题;(2)在RtCEB中,求出C即可解决问题.试题解析:(1)如图,1=C,P=C,1=P,CBPD;(2)CDAB,CEB=90,CBE=55, 线 封 密 内 号学级年名姓 线 封 密 外 C=9055=35,P=C=35.【考点】主要考查了圆周角定理、垂径定理、直角三角形的性质等知识,解题的关键是熟练掌握基本知识3、 (1),(2),【解析】【分析】(1)将分解因式得到(x-2)(x-4)=0,得到x-2=0,x-4=0,解得,;(2)将化简得到
23、,分解因式得到(x-3)(x+1)=0,得到x-3=0,x+1=0,求出,(1),(x-2)(x-4)=0,x-2=0,x-4=0,x=2或x=4,;(2)(2),(x-3)(x+1)=0,x-3=0,x+1=0,x=3或x=-1,【考点】本题考查了解一元二次方程,解决问题的关键是把方程化成一般形式,用分解因式的方法解答4、 (1)每个冰墩墩钥匙扣的进价为12元(2),最大值为1960元;每个冰墩墩玩偶售价x的范围为:【解析】【分析】(1)设每个冰墩墩钥匙扣的进价为x元,根据题意列出分式方程,进而计算求解即可;(2)根据题意列出一次函数关系,根据一次函数的性质求得最大利润即可;根据题意列出方程
24、,根据二次函数的性质求得的范围,根据题意取整数解即可(1)设每个冰墩墩钥匙扣的进价为x元,由题意得:,解得,经检验,是原方程的解且符合题意,答:每个冰墩墩钥匙扣的进价为12元;(2) 线 封 密 内 号学级年名姓 线 封 密 外 且x是大于20的正整数当时,w有最大值,最大值为1960元售价为24元或25元或26元或27元或28元解析如下:由题意得,解得或29抛物线开口向下,x是大于20的正整数当时,每周总利润不低于1870元,【考点】本题考查了分式方程的应用,二次函数的应用,一次函数的应用,根据题意列出方程或关系式是解题的关键5、 (1)6(2)错误,理由见解析【解析】【分析】(1)利用题中给出的对角线条数公式即可求解;(2)利用题中给出的对角线条数公式列出一元二次方程,求解方程的根,根据方程是否有正整数解来判断即可(1)设这个多边形的边数是n,则n(n3)9,解得n6或n3(舍去)这个多边形的边数是6;(2)小明同学的说法是不正确的,理由如下:由题可得n(n3)10,解得n,符合方程的正整数n不存在,n边形不可能有10条对角线,故小明的说法不正确【考点】本题主要考查了一元二次方程的应用,通过方程是否有正整数解来判断是否存在有10条对角线的多边形是解答本题的关键