1、(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题5分,共20分)1已知向量a,b满足:ab(1,3),ab(3,3),则a,b的坐标分别为()A(4,0),(2,6)B(2,6),(4,0)C(2,0),(1,3) D(1,3),(2,0)解析:由得2a(4,0),即a(2,0),ba(3,3)(2,0)(3,3)(1,3)答案:C2已知A(1,2)和B(3,2),且向量a(x3,x23x4)与相等,则x的值为()A1 B1或4C4 D1或4解析:由题意可得(2,0),而a,由向量相等的概念知解之得x1.答案:A3已知A(2,2),B(4,3),向量p的坐标为(2k1,7),
2、且p,则k的值为()A B.C D解析:(2,5)又p,145(2k1)k.答案:D4已知向量(1,3),(2,1),(m1,m2),若点A,B,C能构成三角形,则实数m应满足的条件是()Am2 BmCm1 Dm1解析:(1,3),(2,1),(m1,m2),(2,1)(1,3)(1,2),(m1,m2)(1,3)(m,m1)当A,B,C三点共线时,2mm1,即m1.故若点A,B,C能构成三角形,则m1.答案:C二、填空题(每小题5分,共15分)5已知A(1,2),B(2,8),若,则的坐标为_解析:(2,8)(1,2)(3,6),(1,2),(2,4),(2,4)(1,2)(1,2),(1,
3、2)答案:(1,2)6已知A(2,3),B(5,4),C(7,10),若(R),且点P在第一、三象限的角平分线上,则_.解析:因为,所以(5,4)(5,7)(55,47),由5547,得.答案:7已知(6,1),(x,y),(2,3),则x2y的值为_解析:(6,1)(x,y)(2,3)(x4,y2),(x4,y2)(x4,y2),x(y2)(x4)y0,即x2y0.答案:0三、解答题(每小题10分,共20分)8平面内给定三个向量a(3,2),b(1,2),c(4,1)(1)求3ab2c;(2)求满足ambnc的实数m,n;(3)若(akc)(2ba),求实数k的值解析:(1)3ab2c3(3
4、,2)(1,2)2(4,1)(9,6)(1,2)(8,2)(918,622)(0,6)(2)因为ambnc,所以(3,2)m(1,2)n(4,1)(m4n,2mn)所以解得(3)因为(akc)(2ba),又akc(34k,2k),2ba(5,2),所以2(34k)(5)(2k)0.所以k .9已知向量(4,3),(3,1),点A(1,2)(1)求线段BD的中点M的坐标;(2)若点P(2,y)满足(R),求与y的值解析:(1)设B(x1,y1),因为(4,3),A(1,2),所以(x11,y12)(4,3),所以所以所以B(3,1)同理可得D(4,3),设BD的中点M(x2,y2),则 x2,y21.所以M.(2)由(3,1)(2,y)(1,1y),(4,3)(3,1)(7,4),又(R),所以(1,1y)(7,4)(7,4),所以所以