ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:213KB ,
资源ID:324867      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-324867-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(海南省陵水县民族中学高中人教A版数学选修4-5教案:第08课时 不等式的证明方法之二:综合法与分析法 .doc)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

海南省陵水县民族中学高中人教A版数学选修4-5教案:第08课时 不等式的证明方法之二:综合法与分析法 .doc

1、选修4_5 不等式选讲课 题:第08课时 不等式的证明方法之二:综合法与分析法一、引入:综合法和分析法是数学中常用的两种直接证明方法,也是不等式证明中的基本方法。由于两者在证明思路上存在着明显的互逆性,这里将其放在一起加以认识、学习,以便于对比研究两种思路方法的特点。所谓综合法,即从已知条件出发,根据不等式的性质或已知的不等式,逐步推导出要证的不等式。而分析法,则是由结果开始,倒过来寻找原因,直至原因成为明显的或者在已知中。前一种是“由因及果”,后一种是“执果索因”。打一个比方:张三在山里迷了路,救援人员从驻地出发,逐步寻找,直至找到他,这是“综合法”;而张三自己找路,直至回到驻地,这是“分析

2、法”。以前得到的结论,可以作为证明的根据。特别的,是常常要用到的一个重要不等式。二、典型例题:例1、都是正数。求证:证明:由重要不等式可得本例的证明是综合法。例2、设,求证证法一 分析法要证成立.只需证成立,又因,只需证成立,又需证成立,即需证成立.而显然成立. 由此命题得证。证法二 综合法 注意到,即,由上式即得, 从而成立。议一议:根据上面的例证,你能指出综合法和分析法的主要特点吗?例3、已知a,b,m都是正数,并且求证: (1)证法一 要证(1),只需证 (2)要证(2),只需证 (3)要证(3),只需证 (4)已知(4)成立,所以(1)成立。上面的证明用的是分析法。下面的证法二采用综合

3、法。证法二 因为 是正数,所以 两边同时加上得两边同时除以正数得(1)。读一读:如果用或表示命题P可以推出命题Q(命题Q可以由命题P推出),那么采用分析法的证法一就是 (1)而采用综合法的证法二就是 如果命题P可以推出命题Q,命题Q也可以推出命题P,即同时有,那么我们就说命题P与命题Q等价,并记为在例2中,由于都是正数,实际上 例4、证明:通过水管放水,当流速相同时,如果水管横截面的周长相等,那么横截面是圆的水管比横截面是正方形的水管流量大。分析:当水的流速相同时,水管的流量取决于水管横截面面积的大小。设截面的周长为,则周长为的圆的半径为,截面积为;周长为的正方形为,截面积为。所以本题只需证明

4、。证明:设截面的周长为,则截面是圆的水管的截面面积为,截面是正方形的水管的截面面积为。只需证明:。为了证明上式成立,只需证明。两边同乘以正数,得:。因此,只需证明。上式显然成立,所以 。这就证明了:通过水管放水,当流速相同时,如果水管横截面的周长相等,那么横截面是圆的水管比横截面是正方形的水管流量大。例5、证明:。证法一 因为 (2) (3) (4)所以三式相加得 (5)两边同时除以2即得(1)。证法二 因为所以(1)成立。例6、证明: (1)证明 (1) (2)(3) (4) (5)(5)显然成立。因此(1)成立。例7、已知都是正数,求证并指出等号在什么时候成立?分析:本题可以考虑利用因式分

5、解公式 着手。证明: = = 由于都是正数,所以而,可知 即(等号在时成立)探究:如果将不等式中的分别用来代替,并在两边同除以3,会得到怎样的不等式?并利用得到的结果证明不等式: ,其中是互不相等的正数,且.三、小结:解不等式时,在不等式的两边分别作恒等变形,在不等式的两边同时加上(或减去)一个数或代数式,移项,在不等式的两边同时乘以(或除以)一个正数或一个正的代数式,得到的不等式都和原来的不等式等价。这些方法,也是利用综合法和分析法证明不等式时常常用到的技巧。四、练习:1、已知求证:2、已知求证3、已知求证4、已知求证:(1)(2) 5、已知都是正数。求证:(1) (2)6、已知都是互不相等的正数,求证五、作业:

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1