ImageVerifierCode 换一换
格式:DOC , 页数:18 ,大小:151.50KB ,
资源ID:321818      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-321818-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(江苏省扬中市第二中学高二国庆假期作业-数列练习(数学).doc)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

江苏省扬中市第二中学高二国庆假期作业-数列练习(数学).doc

1、江苏省扬中市第二中学高二数学国庆假期作业(数列练习)1. 已知下面各数列an的前n项和Sn的公式,求数列的通项公式(1)Snn21 (2)Sn2n3;(1)写出数列的前5项;(2)求an3. 三个数成等比数列,若第二个数加4就成等差数列,再把这个等差数列的第3项加32又成等比数列,求这三个数4.有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数5.在100以内有多少个能被7个整除的自然数?6.在1与7之间顺次插入三个数a,b,c使这五个数成等差数列,求此数列7.在1000,2000内能被3整除且被4除余1的整数共有多

2、少个?8.设xy,且两数列x,a1,a2,a3,y和b1,x,9.选择题:实数a,b,5a,7,3b,c组成等差数列,且ab5a73bc2500,则a,b,c的值分别为 A1,3,5B1,3,7 C1,3,99D1,3,910.在1和2之间插入2n个数,组成首项为1、末项为2的等差数列,若这个数列的前半部分的和同后半部分的和之比为913,求插入的数的个数11. 已知等差数列an中,S3=21,S6=64,求数列|an|的前n项和Tn12. 已知等差数列an的公差是正数,且a3a7=12,a4a6=4,求它的前20项的和S20的值13. 解答下列各题:(1)已知:等差数列an中a23,a617,

3、求a9;(2)在19与89中间插入几个数,使它们与这两个数组成等差数列,并且此数列各项之和为1350,求这几个数;(3)已知:等差数列an中,a4a6a15a1750,求S20;(4)已知:等差数列an中,an=333n,求Sn的最大值14.在项数为2n的等差数列中,各奇数项之和为75,各偶数项之和为90,末项与首项之差为27,则n之值是多少?15.在等差数列an中,已知a125,S9S17,问数列前多少项和最大,并求出最大值16.求数列的通项公式:(1)an中,a12,an+13an2(2)an中,a1=2,a25,且an+23an+12an0思路:转化为等比数列17.已知等差数列an的公差

4、和等比数列bn的首项都相同,公比都是d,又知d1,且a4=b4,a10=b10:(1)求a1与d的值;(2)b16是不是an中的项?18若S是公差不为0的等差数列的前n项和,且成等比数列。(1)求数列的公比。 (2)若,求的通项公式.(2)设,是数列的前n项和,求使得对所有都成立的最小正整数m。19.求下列数列的前n项和Sn:20. 求和:21.求下列数列的前n项和Sn: (1)1,4,9,n2,;(2)1,3x,5x2,(2n1)xn-1,(x1)/PGN0170A.TXT/P22.nN*,若bn=(1)nSn,求数列bn的前n项和Tn参考答案1.解 (1)当n1时,a1S1=112;当n2

5、时,anSnSn-1=n21(n1)212n1,由于a1不适合于此等式,(2)当n1时,a1=S123=5;当n2时,an=SnSn-12n3(2n-13)2n-1,由于a1不适合于此等式,2.(2)由第(1)小题中前5项不难求出3.解法一 按等比数列设三个数,设原数列为a,aq,aq2由已知:a,aq4,aq2成等差数列即:2(aq4)=aaq2a,aq4,aq232成等比数列即:(aq4)2=a(aq232)解法二 按等差数列设三个数,设原数列为bd,b4,bd由已知:三个数成等比数列即:(b4)2=(bd)(bd)bd,b,bd32成等比数列即b2=(bd)(bd32)解法三 任意设三个

6、未知数,设原数列为a1,a2,a3由已知:a1,a2,a3成等比数列a1,a24,a3成等差数列得:2(a24)=a1a3a1,a24,a332成等比数列得:(a24)2=a1(a332)说明 将三个成等差数列的数设为ad,a,ad;将三个成简化计算过程的作用4.分析 本题有三种设未知数的方法方法一 设前三个数为ad,a,ad,则第四个数由已知条方法二 设后三个数为b,bq,bq2,则第一个数由已知条件推得为2bbq方法三 设第一个数与第二个数分别为x,y,则第三、第四个数依次为12y,16x由这三种设法可利用余下的条件列方程组解出相关的未知数,从而解出所求的四个数,所求四个数为:0,4,8,

7、16或15,9,3,1解法二 设后三个数为:b,bq,bq2,则第一个数为:2bbq所求四个数为:0,4,8,16或15,9,3,1解法三 设四个数依次为x,y,12y,16x这四个数为0,4,8,16或15,9,3,15.解 100以内能被7整除的自然数构成一个等差数列,其中a1=7,d7,an98代入ana1(n1)d中,有987(n1)7解得n14答 100以内有14个能被7整除的自然数6.解 设这五个数组成的等差数列为an由已知:a11,a5771(51)d 解出d2所求数列为:1,1,3,5,77.解 设an=3n,bm4m3,n,mN得n4k1(kN),得an,bm中相同的项构成的

8、数列cn的通项cn12n3(nN)则在1000,2000内cn的项为84123,85123,166123n166841=83 共有83个数8.9.又 145a3b, a1,b3首项为1,公差为2a50=c=1(501)2=99 a1,b3,c9910.解 依题意21(2n21)d由,有(2n1)d=1 共插入10个数11.d,已知S3和S6的值,解方程组可得a1与d,再对数列的前若干项的正负性进行判断,则可求出Tn来解方程组得:d2,a19an9(n1)(n2)2n11其余各项为负数列an的前n项和为:当n5时,Tnn210n当n6时,TnS5|SnS5|S5(SnS5)2S5SnTn2(25

9、50)(n210n)n210n50说明 根据数列an中项的符号,运用分类讨论思想可求|an|的前n项和12.解法一 设等差数列an的公差为d,则d0,由已知可得由,有a124d,代入,有d2=4再由d0,得d2 a1=10最后由等差数列的前n项和公式,可求得S20180解法二 由等差数列的性质可得:a4a6a3a7 即a3a74又a3a7=12,由韦达定理可知:a3,a7是方程x24x120的二根解方程可得x1=6,x22 d0 an是递增数列a36,a7=213.分析与解答a9=a6(96)d=173(5)=32(2)a1=19,an+2=89,Sn+21350(3)a4a6a15a17=5

10、0又因它们的下标有417615=21a4a17=a6a15=25(4)an=333n a130nN,当n=10或n=11时,Sn取最大值16514.解 S偶项S奇项=ndnd=9075=15又由a2na127,即(2n1)d=2715.解法一 建立Sn关于n的函数,运用函数思想,求最大值a1=25,S17S9 解得d2当n=13时,Sn最大,最大值S13169解法二 因为a1=250,d20,所以数列an是递减等a125,S9S17an=25(n1)(2)=2n27即前13项和最大,由等差数列的前n项和公式可求得S13=169解法三 利用S9=S17寻找相邻项的关系由题意S9=S17得a10a

11、11a12a17=0而a10a17=a11a16=a12a15=a13a14a13a140,a13=a14 a130,a140S13=169最大解法四 根据等差数列前n项和的函数图像,确定取最大值时的nan是等差数列可设SnAn2Bn二次函数y=Ax2Bx的图像过原点,如图321所示S9S17,取n=13时,S13169最大16.an1是等比数列an1=33n-1 an=3n1an+1an是等比数列,即an+1an=(a2a1)2n-1=32n-1再注意到a2a1=3,a3a2=321,a4a3=322,anan-1=32n-2,这些等式相加,即可以得到17.思路:运用通项公式列方程(2)b1

12、6=b1d15=32b1b16=32b1=32a1,如果b16是an中的第k项,则32a1=a1(k1)d(k1)d=33a1=33dk=34即b16是an中的第34项19.(3)先对通项求和20.21.解 (1)Sn=a2a23a3nan a0 aSn=a22a33a4(n1)annan+1SnaSn=aa2a3annan+1 a1(2)Sn=149n2 (a1)3a3=3a23a1 2313=3123113323=3223214333=332331n3(n1)3=3(n1)23(n1)1(n1)3n3=3n23n1把上列几个等式的左右两边分别相加,得(n1)313=3(1222n2)3(1

13、2n)n 122232n2(3) Sn=13x5x27x3(2n1)xn-1 xSn=x3x25x3(2n3)xn-1(2n1)xn两式相减,得(1x)Sn=12x(1xx2xn-2)(2n1)xn两式相减,得22.分析 求bn的前n项和,应从通项bn入手,关键在于求an的前n项和Sn,而由已知只需求an的通项an即可3,由a2=1,解得a3=1即a1=1,a2=3,a3=5, d=2an=12(n1)=2n1Sn=135(2n1)=n2bn=(1)nSn=(1)nn2Tn=12223242(1)nn2当n为偶数时,即n=2k,kN*Tn=(1222)(3242)(2k1)2(2k)2=37(4k1)当n为奇数时,即n=2k1,kN*Tn=12223242(2k1)2=12223242(2k1)2(2k)2(2k)2=(2k1)k(2k)2=k(2k1)

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1