ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:174KB ,
资源ID:31809      下载积分:9 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-31809-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(专题14 解析几何(2)-2010-2019学年高考新课标全国I卷数学(文)真题分类汇编 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

专题14 解析几何(2)-2010-2019学年高考新课标全国I卷数学(文)真题分类汇编 WORD版含解析.doc

1、专题12 解析几何(2)解析几何大题:10年10考,每年1题命题的特点:2011-2015年和2019年的载体都是圆,利用圆作为载体,更利于考查数形结合,圆承担的使命就是“形”,尽量不要对圆像椭圆一样运算,2016-2018年的载体连续3年都是抛物线,2010年的载体是椭圆1(2019年)已知点A,B关于坐标原点O对称,|AB|4,M过点A,B且与直线x+20相切(1)若A在直线x+y0上,求M的半径;(2)是否存在定点P,使得当A运动时,|MA|MP|为定值?并说明理由【解析】(1)M过点A,B且A在直线x+y0上,点M在线段AB的中垂线xy0上,设M的方程为:(xa)2+(ya)2R2(R

2、0),则圆心M(a,a)到直线x+y0的距离d,又|AB|4,在RtOMB中,d2+(|AB|)2R2,即又M与x2相切,|a+2|R由解得或,M的半径为2或6;(2)线段AB为M的一条弦O是弦AB的中点,圆心M在线段AB的中垂线上,设点M的坐标为(x,y),则|OM|2+|OA|2|MA|2,M与直线x+20相切,|MA|x+2|,|x+2|2|OM|2+|OA|2x2+y2+4,y24x,M的轨迹是以F(1,0)为焦点x1为准线的抛物线,|MA|MP|x+2|MP|x+1|MP|+1|MF|MP|+1,当|MA|MP|为定值时,则点P与点F重合,即P的坐标为(1,0),存在定点P(1,0)

3、使得当A运动时,|MA|MP|为定值2(2018年)设抛物线C:y22x,点A(2,0),B(2,0),过点A的直线l与C交于M,N两点(1)当l与x轴垂直时,求直线BM的方程;(2)证明:ABMABN【解析】(1)当l与x轴垂直时,x2,代入抛物线解得y2,M(2,2)或M(2,2),直线BM的方程:yx+1,或:yx1(2)证明:设直线l的方程为l:xty+2,M(x1,y1),N(x2,y2),联立直线l与抛物线方程得,消x得y22ty40,即y1+y22t,y1y24,则有kBN+kBM+0,直线BN与BM的倾斜角互补,ABMABN3(2017年)设A,B为曲线C:y上两点,A与B的横

4、坐标之和为4(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AMBM,求直线AB的方程【解析】(1)设A(x1,),B(x2,)为曲线C:y上两点,则直线AB的斜率为k(x1+x2)41;(2)设直线AB的方程为yx+t,代入曲线C:y,可得x24x4t0,即有x1+x24,x1x24t,再由y的导数为yx,设M(m,),可得M处切线的斜率为m,由C在M处的切线与直线AB平行,可得m1,解得m2,即M(2,1),由AMBM可得,kAMkBM1,即为1,化为x1x2+2(x1+x2)+200,即为4t+8+200,解得t7则直线AB的方程为yx+74(2016年

5、)在直角坐标系xOy中,直线l:yt(t0)交y轴于点M,交抛物线C:y22px(p0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H(1)求;(2)除H以外,直线MH与C是否有其它公共点?说明理由【解析】(1)将直线l与抛物线方程联立,解得P(,t),M关于点P的对称点为N,t,N(,t),ON的方程为yx,与抛物线方程联立,解得H(,2t)2;(2)由(1)知kMH,直线MH的方程为yx+t,与抛物线方程联立,消去x可得y24ty+4t20,16t244t20,直线MH与C除点H外没有其它公共点5(2015年)已知过点A(0,1)且斜率为k的直线l与圆C:(x2)2+(y3)21

6、交于点M、N两点(1)求k的取值范围;(2)若12,其中O为坐标原点,求|MN|【解析】(1)由题意可得,直线l的斜率存在,设过点A(0,1)的直线方程为ykx+1,即kxy+10由已知可得圆C的圆心C的坐标(2,3),半径R1故由1,故当k,过点A(0,1)的直线与圆C:(x2)2+(y3)21相交于M,N两点(2)设M(x1,y1);N(x2,y2),由题意可得,经过点M、N、A的直线方程为ykx+1,代入圆C的方程(x2)2+(y3)21,可得 (1+k2)x24(k+1)x+70,x1+x2,x1x2,y1y2(kx1+1)(kx2+1)k2x1x2+k(x1+x2)+1k2+k+1,

7、由x1x2+y1y212,解得 k1,故直线l的方程为 yx+1,即 xy+10圆心C在直线l上,MN长即为圆的直径所以|MN|26(2014年)已知点P(2,2),圆C:x2+y28y0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点(1)求M的轨迹方程;(2)当|OP|OM|时,求l的方程及POM的面积【解析】(1)由圆C:x2+y28y0,得x2+(y4)216,圆C的圆心坐标为(0,4),半径为4设M(x,y),则,由题意可得:即x(2x)+(y4)(2y)0整理得:(x1)2+(y3)22M的轨迹方程是(x1)2+(y3)22(2)由(1)知M的轨迹是以点N(

8、1,3)为圆心,为半径的圆,由于|OP|OM|,故O在线段PM的垂直平分线上,又P在圆N上,从而ONPMkON3,直线l的斜率为直线PM的方程为,即x+3y80则O到直线l的距离为又N到l的距离为,|PM|7(2013年)已知圆M:(x+1)2+y21,圆N:(x1)2+y29,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|【解析】(1)由圆M:(x+1)2+y21,可知圆心M(1,0);圆N:(x1)2+y29,圆心N(1,0),半径3设动圆的半径为R,动圆P与圆M外切并与圆

9、N内切,|PM|+|PN|R+1+(3R)4,而|NM|2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,a2,c1,b2a2c23曲线C的方程为(x2)(2)设曲线C上任意一点P(x,y),由于|PM|PN|2R2312,所以R2,当且仅当P的圆心为(2,0),R2时,其半径最大,其方程为(x2)2+y24l的倾斜角为90,则l与y轴重合,可得|AB|若l的倾斜角不为90,由于M的半径1R,可知l与x轴不平行,设l与x轴的交点为Q,则,可得Q(4,0),所以可设l:yk(x+4),由l于M相切可得:,解得当时,联立,得到7x2+8x80,|AB|,由于对称性可知:当时,也

10、有|AB|综上可知:|AB|或8(2012年)设抛物线C:x22py(p0)的焦点为F,准线为l,AC,已知以F为圆心,FA为半径的圆F交l于B,D两点(1)若BFD90,ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值【解析】(1)由对称性知:BFD是等腰直角,斜边|BD|2p点A到准线l的距离,ABD的面积SABD,解得p2,所以F坐标为(0,1),圆F的方程为x2+(y1)28(2)由题设(),则,A,B,F三点在同一直线m上,又AB为圆F的直径,故A,B关于点F对称由点A,B关于点F对称得:

11、,得:,直线:, 切点, 直线:,坐标原点到m,n距离的比值为:9(2011年)在平面直角坐标系xOy中,曲线yx26x+1与坐标轴的交点都在圆C上(1)求圆C的方程;(2)若圆C与直线xy+a0交与A,B两点,且OAOB,求a的值【解析】(1)法一:曲线yx26x+1与y轴的交点为(0,1),与x轴的交点为(3+2,0),(32,0)可知圆心在直线x3上,故可设该圆的圆心C为(3,t),则有32+(t1)2(2)2+t2,解得t1,故圆C的半径为,所以圆C的方程为(x3)2+(y1)29法二:圆x2+y2+Dx+Ey+F0,x0,y1有1+E+F0,y0,x2 6x+10与x2+Dx+F0是

12、同一方程,故有D6,F1,E2,即圆方程为x2+y26x2y+10(2)设A(x1,y1),B(x2,y2),其坐标满足方程组,消去y,得到方程2x2+(2a8)x+a22a+10,由已知可得判别式5616a4a20在此条件下利用根与系数的关系得到x1+x24a,x1x2,由于OAOB可得x1x2+y1y20,又y1x1+a,y2x2+a,所以可得2x1x2+a(x1+x2)+a20由可得a1,满足5616a4a20故a110(2010年)设F1,F2分别是椭圆E:x2+1(0b1)的左、右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列(1)求|AB|;(2)若直线l的斜率为1,求b的值【解析】(1)由椭圆定义知|AF2|+|AB|+|BF2|4,又2|AB|AF2|+|BF2|,得(2)的方程式为yx+c,其中,设A(x1,y1),B(x2,y2),则A,B两点坐标满足方程组,化简得(1+b2)x2+2cx+12b20则, 因为直线AB的斜率为1,所以,即则解得

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3