ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:250.50KB ,
资源ID:316062      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-316062-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020-2021学年数学人教B版必修4教学教案:2-1-3 向量的减法 (1) WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2020-2021学年数学人教B版必修4教学教案:2-1-3 向量的减法 (1) WORD版含答案.doc

1、2.1.3 向量的减法【教学目标】1、知识与技能了解相反向量的概念;会作两个向量的减向量,并理解其几何意义。2、过程与方法提高学生观察、归纳、迁移能力和动手能;培养学生的转化思想3、情感、态度与价值观注重培养学生积极思考、勇于探索的科学精神以及总结规律、尊重规律的观念。【教学重点】向量的减法运算及其几何意义。【教学难点】向量减法的理解.【课 型】新授课【教学过程】一、导入新课 当两个向量相加时,能轻易的在图中表示出来,但是当两个向量想减时,在现有的知识的基础上,能表示出来吗?二、温故知新复习向量加法运算及其几何意义1、向量加法的三角形法则2、向量加法的平行四边形法则二、新知探究提出问题1向量是

2、否有减法?向量进行减法运算,必须先引进一个什么样的新概念?如何理解向量的减法?向量的加法运算有平行四边形法则和三角形法则,那么,向量的减法是否也有类似的法则?师生活动师:数的减法运算是数的加法运算的逆运算,数的减法定义即减去一个数等于加上这个数的相反数,因此定义数的减法运算,必须先引进一个相反数的概念.类似地,向量的减法运算也可定义为向量加法运算的逆运算.可类比数的减法运算,我们定义向量的减法运算,也应引进一个新的概念,这个概念又该如何定义?引导学生思考,相反向量有哪些性质?生:向量也有减法运算.定义向量减法运算之前,应先引进相反向量.与数x的相反数是-x类似,我们规定,与a长度相等,方向相反

3、的量,叫做a的相反向量,记作-a.向量减法的定义.我们定义a-b=a+(-b),即减去一个向量相当于加上这个向量的相反向量.规定:零向量的相反向量是零向量.向量的减法运算也有平行四边形法则和三角形法则,这也正是向量的运算的几何意义所在,是数形结合思想的重要体现.师生共同得出;任一向量与其相反向量的和是零向量,即a+(-a)=(-a)+a=0.所以,如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.(1)平行四边形法则如图,设向量=b,=a,则=-b,由向量减法的定义,知=a+(-b)=a-b.又b+=a,所以=a-b.由此,我们得到a-b的作图方法. (2)三角形法则如图,已知a

4、、b,在平面内任取一点O,作=a,=b,则=a-b,即a-b可以表示为从b的终点指向a的终点的向量,这是向量减法的几何意义.提出问题2上图中,如果从a的终点到b的终点作向量,那么所得向量是什么?改变上图中向量a、b的方向使ab,怎样作出a-b呢?生:=b-a.上黑板板演.三、应用示例例1、如图3(1),已知向量a、b、c、d,求作向量a-b,c-d. 图3设计意图:让学生亲自动手操作,引导学生注意规范操作,为以后解题打下良好基础;变式训练设计意图:掌握用两个向量表示几何图形中的其他向量的方法,这是用向量证明几何问题的基础.课堂练习课本P87练习13四、课堂小结1.先由学生回顾本节学习的数学知识

5、:相反向量,向量减法的定义,向量减法的几何意义,向量差的作图.2.教师与学生一起总结本节学习的数学方法,类比,数形结合,几何作图,分类讨论.五、作业布置课本习题2.2 A组5、(4)(7)6、7、8.备选例题:例3、 判断题:(1)若非零向量a与b的方向相同或相反,则a+b的方向必与a、b之一的方向相同.(2)ABC中,必有+=0.(3)若+=0,则A、B、C三点是一个三角形的三顶点.(4)|a+b|a-b|.设计意图:根据向量的加、减法及其几何意义解决相关问题.解:(1)a与b方向相同,则a+b的方向与a和b方向都相同;若a与b方向相反,则有可能a与b互为相反向量,此时a+b=0的方向不确定

6、,说与a、b之一方向相同不妥.(2)由向量加法法则+=,与CA是互为相反向量,所以有上述结论.(3)因为当A、B、C三点共线时也有+=0,而此时构不成三角形.(4)当a与b不共线时,|a+b|与|a-b|分别表示以a和b为邻边的平行四边形的两条对角线的长,其大小不定.当a、b为非零向量共线时,同向则有|a+b|a-b|,异向则有|a+b|a-b|;当a、b中有零向量时,|a+b|=|a-b|.综上所述,只有(2)正确.例4、 若|=8,|=5,则|的取值范围是( )A.3,8 B.(3,8) C.3,13 D.(3,13)设计意图:重要性质|a|-|b|a+b|a|+|b|的运用.解析:=-.

7、(1)当、同向时,|=8-5=3;(2)当、反向时,|=8+5=13;(3)当、不共线时,3|13.综上,可知3|13.答案:C备选练习:1.已知一点O到ABCD的3个顶点A、B、C的向量分别是a、b、c,则向量等于( )A.a+b+c B.a-b+c C.a+b-c D.a-b-c解析:如图,点O到平行四边形的三个顶点A、B、C的向量分别是a、b、c,结合图形有=+=+=+-=a-b+c.答案:B2.若=a+b,=a-b.当a、b满足什么条件时,a+b与a-b垂直?当a、b满足什么条件时,|a+b|=|a-b|?当a、b满足什么条件时,a+b平分a与b所夹的角 ?a+b与a-b可能是相等向量吗?解析:如图6,用向量构建平行四边形,其中向量、恰为平行四边形的对角线.由平行四边形法则,得=a+b,=-=a-b.由此问题就可转换为:当边AB、AD满足什么条件时,对角线互相垂直?(|a|=|b|)当边AB、AD满足什么条件时,对角线相等?(a、b互相垂直)当边AB、AD满足什么条件时,对角线平分内角?(a、b相等)a+b与a-b可能是相等向量吗?(不可能,因为对角线方向不同)说明:灵活的构想,独特巧妙,数形结合思想得到充分体现.由此我们可以想到在解决向量问题时,可以利用向量的几何意义构造几何图形,转化为平面几何问题,这就是数形结合解题的威力与魅力,教师引导学生注意领悟.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3