1、巩固层知识整合提升层题型探究求函数的定义域【例1】(1)求函数y的定义域(2)将长为a的铁丝折成矩形,求矩形面积y关于一边长x的解析式,并写出此函数的定义域解(1)解不等式组得故函数的定义域是x|1x5且x3(2)设矩形的一边长为x,则另一边长为(a2x),所以yx(a2x)x2ax,定义域为.1已给出函数解析式:函数的定义域是使解析式有意义的自变量的取值集合2实际问题:求函数的定义域既要考虑解析式有意义,还应考虑使实际问题有意义1.函数f(x)(3x1)0的定义域是()A.B.C.D.D由得x0时,f(x)1,则f(x)的解析式为_(2)已知f,则f(x)的解析式为_(1)f(x)(2)f(
2、x)x2x1,x(,1)(1,)(1)设x0,f(x)1.f(x)是奇函数,f(x)f(x),即f(x)1,f(x)1.f(x)是奇函数,f(0)0,f(x)(2)令t1,则t1.把x代入f,得f(t)(t1)21(t1)t2t1.所以所求函数的解析式为f(x)x2x1,x(,1)(1,)求函数解析式的题型与相应的解法(1)已知形如f(g(x)的解析式求f(x)的解析式,使用换元法或配凑法.(2)已知函数的类型(往往是一次函数或二次函数),使用待定系数法.(3)含f(x)与f(x)或f(x)与,使用解方程组法.(4)已知一个区间的解析式,求另一个区间的解析式,可用奇偶性转移法.2(1)已知f(
3、x)3f(x)2x1,则f(x)_.(2)二次函数f(x)ax2bxc(a,bR,a0)满足条件:当xR时,f(x)的图象关于直线x1对称;f(1)1;f(x)在R上的最小值为0.求函数f(x)的解析式(1)x因为f(x)3f(x)2x1,以x代替x得f(x)3f(x)2x1,两式联立得f(x)x.(2)解因为f(x)的对称轴为x1,所以1即b2a,又f(1)1,即abc1,由条件知:a0,且0,即b24ac,由上可求得a,b,c,所以f(x)x2x.函数的性质及应用【例3】已知函数f(x)是定义在(1,1)上的奇函数,且f.(1)确定函数f(x)的解析式;(2)用定义证明f(x)在(1,1)
4、上是增函数思路点拨:(1)用f(0)0及f求a,b的值;(2)用单调性的定义求解解(1)由题意,得故f(x).(2)任取1x1x21,则f(x1)f(x2).1x1x21,x1x20,1x0.又1x1x20,f(x1)f(x2)0,f(x)在(1,1)上是增函数1在本例条件不变的情况下解不等式:f(t1)f(t)0.解由f(t1)f(t)0得f(t1)f(t)f(t)f(x)在(1,1)上是增函数,1t1t1,0t,不等式的解集为.2把本例条件“奇函数”改为“偶函数”,求f(x)的解析式解由题意可知,f(x)f(x),即,a0,又f,b,f(x).巧用奇偶性及单调性解不等式(1)利用已知条件,
5、结合函数的奇偶性,把已知不等式转化为f(x1)f(x2)的形式.(2)根据奇函数在对称区间上的单调性一致,偶函数在对称区间上的单调性相反,脱掉不等式中的“f”转化为简单不等式求解.函数的图象及应用【例4】已知:函数f(x)x22|x|1(3x3)(1)求证:f(x)是偶函数;(2)画出这个函数的图象;(3)指出函数f(x)的单调区间,并说明在各个单调区间上f(x)的单调性;(4)求函数f(x)的值域解(1)证明:函数的定义域为3,3,关于原点对称,又f(x)(x)22|x|1x22|x|1f(x),f(x)为偶函数(2)当0x3时,f(x)x22x1(x1)22,当3x0时,f(x)的图象如图所示,则不等式xf(x)f(x)0的解集是_.(0,3)(3,0)因为f(x)为奇函数,所以f(x)f(x),故xf(x)f(x)xf(x)(f(x)2xf(x)0时,若0x3,则f(x)3,则f(x)0.又因为f(x)为奇函数,所以当x3时,f(x)0,当3x0.而不等式2xf(x)0可化为或故不等式的解集为(0,3)(3,0)