ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:370KB ,
资源ID:312666      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-312666-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(江苏省常州市武进区九年级数学上册1.3一元二次方程的根与系数的关系专项练习三新版苏科版.doc)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

江苏省常州市武进区九年级数学上册1.3一元二次方程的根与系数的关系专项练习三新版苏科版.doc

1、第一章 第3节一元二次方程根与系数的关系专项练习三三、填空题专项训练1:1阅读材料:设一元二次方程的两根为,则两根与方程系数之间有如下关系:,根据该材料填空:已知,是方程的两实数根,则的值为_ 2若m、n是一元二次方程x25x2=0的两个实数根,则m+nmn= 3如果是一元二次方程的两个根,那么 ;的值是_4已知2是关于x的方程x24xC=0的根,则另一根为_,C为_5关于的一元二次方程有两个不相等的实数根,则的取值范围是_6已知一元二次方程x2+3x+m=0的一个根为-1,则另一个根为_7若,则方程必有一个根是_.8设x1,x2是方程x2x20130的两实数根,则x132014x22013

2、9已知x1,x2是一元二次方程x2+2(m+1)x+m21=0的两实数根,且满足(x1x2)2=16x1x2,实数m的值为_10(关于x的一元二次方程x2+2x+a=0的一个根为2,则它的另一个根为 11已知m,n是关于x的一元二次方程的两实根,那么m+n的最大值是_.12如果关于x的方程m2x2(m2)x+1=0的两个实数根互为倒数,那么m=_.13已知a是方程+3x6=0的一个根,则代数式3a(2a+1)(2a+1)(2a1)的值为 14已知a,b是方程x2+2x5=0的两个实数根,则a2b10+ab2的值为_15若关于x的方程(k-1)x2-4x+5=0 有实数根, 则k 的取值范围是_

3、.16若关于x的一元二次方程(m1)x2+2x2=0有实数根,则m满足_17阅读材料:设一元二次方程 (0)的两根为, ,则两根与方程的系数之间有如下关系:+, .根据该材料完成下列填空:已知, 是方程的两根,则(1)+ _, _;(2)()()_.18关于x的方程x2(2m1)xm210的两实数根为x1、x2,且3,则m_.19设一元二次方程x23x10的两根分别是x1,x2,则x1x2(3x2)_.20已知、是一元二次方程x2-4x-3=0的两实数根,则(-3)(-3)_21已知x1,x2是关于x的方程(x2)(x3)=(n2)(n3)的两个实数根则:(1)两实数根x1,x2的和是_;(2

4、)若x1,x2恰是一个直角三角形的两直角边的边长,那么这个直角三角形面积的最大值是_22已知x1,x2是关于x的一元二次方程x25xa0的两个实数根,且10,则a_23设m,n是一元二次方程x22x70的两个根,则m23mn_.24设x1,x2是一元二次方程x2+5x3=0的两根,且2x1(x22+6x23)+a=4,则a=_25如果m、n是两个不相等的实数,且满足,那么代数式 _ 26己知、是一元二次方程的两个实数根,则的值是_.答案:16试题分析:根据一元二次方程的根与系数的关系得到,两根之和与两根之积,把代数式变形成与两根之和和两根之积有关的式子,代入两根之和与两根之积,求得代数式的值解

5、:根据题意得 + =-4,=2,=-2=8-2=6故答案为627试题分析:根据根与系数的关系得到m+n=5,mn=2,然后利用整体代入的方法计算即可解:根据题意得m+n=5,mn=2,所以m+nmn=5(2)=7故答案为73(1)-3;(2)-2试题分析:因为是一元二次方程的两个根,所以,所以,所以42-1试题解析:关于x的方程x2-4x+C=0的一个根是2+,设方程的另一根为t,则2+t=4,解得,t=2-根据根与系数的关系得:C=(2+)(2-)=4-3=15k且k0试题分析:本题主要考查了一元二次方程的根的判别式解题时,注意一元二次方程的“二次项系数不为0”这一条件根据一元二次方程kx2

6、-4x+3=0有两个不相等的实数根,知=b2-4ac0,然后据此列出关于k的方程,解方程即可解:kx2-4x+3=0有两个不相等的实数根,=16-12k0,且k0,解得,k且k0;故答案是:k且k0考点:根的判别式6-2试题分析:设另一个根是x,由根与系数的关系可得:x+(-1)=-3,所以x=-27试题分析:观察所给条件和原方程,试根可得有一根必为.82014解析:关于两根的对称式,我们可以利用根与系数的关系求出它的值此题中待求的式子不是两根的对称式,因此需转化根据根的定义得到等式,这个等式是解题的关键,利用它既可以把x1的3次降为x1的1次,又可以把不对称的式子转化为对称的式子依题意可知x

7、1x21,x1x22013,且x12x120130x12x12013将式两边同时乘以x1,得x13x122013x1将代入,得x132014x12013x132014x220132014x120132014x220132014(x1x2)201491解:由题意有=2(m+1)24(m21)0,整理得8m+80,解得m1,由两根关系,得x1+x2=2(m+1),x1x2=m21,(x1x2)2=16x1x2(x1+x2)23x1x216=0,2(m+1)23(m21)16=0,m2+8m9=0,解得m=9或m=1m1,m=1104试题分析:设方程的另一个根为t,根据根与系数的关系得2+t=2,然

8、后解一次方程即可解:设方程的另一个根为t,根据题意得2+t=2,所以t=4故答案为:4114分析:根据一元二次方程根的判别式和一元二次方程根与系数的关系进行分析解答即可.详解:关于x的一元二次方程有两个实数根,=,解得:,m、n是关于x的一元二次方程的两个实数根,当时,m+n的值最大,最大值为4.故答案为:4.点拨:解答本题有以下两个要点:(1)一元二次方程有实数根的条件是“根的判别式”;(2)若一元二次方程有两个实数根m、n,则.12-1解析:设关于的方程的两根是: ,则,又原方程的两根互为倒数,解得: .当时,原方程为: ,此时方程没有实数根;当时,原方程为: ,此时方程有实数根;.137

9、.试题分析:首先把代数式3a(2a+1)(2a+1)(2a1)去括号合并同类项得到+3a+1,然后把a代入方程+3x6=0得到+3a=6,所以+3a+1=6+1=7.即代数式3a(2a+1)(2a+1)(2a1)的值为7.故答案为:7140试题解析:是方程的两个实数根.15k且k1试题分析:根据一元二次方程的定义和的意义得到k-10,即k1,且0,然后求出这两个不等式解的公共部分即为k的取值范围试题解析:关于x的方程(k-1)x2-4x+5=0有两个实数根,k-10,即k1,且0,即42-4(k-1)50,解得k,k的取值范围为k且k116m且m1解析:一元二次方程有实数根,m10,即m1;b

10、24ac=224(m1)(2)=8m40,即m;m且m1.故答案为m且m1.点拨:(1)一元二次方程二次项系数不能为0;(2)若一元二次方程有两个不相等的实数根,那么b24ac0;若一元二次方程有两个相等的实数根,那么b24ac=0;若一元二次方程没有实数根,那么b24ac0.17 2015 2016 2解:(1)根据题意得m+n=2015,mn=2016;(2)m,n是方程x22015x+2016=0的两根,m22015m+2016=0,n22015n+2016=0,m2=2015m2016,n2=2015n2016,(m22016m+2017)(n22016n+2017)=(2015m20

11、16-2016m+2017)(2015n2016-2016n+2017)=(m+1)(n+1)=mn(m+n)+1=20162015+1=2故答案为:2015,2016,2点拨:本题考查了一元二次方程ax2+bx+c=0(a0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=,x1x2=也考查了一元二次方程的解,注意通过降次代入简化计算180分析:根据方程x2-(2m-1)x+m2-1=0的两实数根为x1,x2,得出x1+x2与x1x2的值,再根据x12+x22=3,即可求出m的值详解:方程x2-(2m-1)x+m2-1=0的两实数根为x1,x2,x1+x2=2m-1,x1x2=m2

12、-1,x12+x22=(x1+x2)2-2x1x2=(2m-1)2-2(m2-1)=3,解得:m1=0,m2=2(不合题意,舍去),m=0;故答案为:0点拨:此题主要考查了一元二次方程根与系数的关系,关键是根据一元二次方程根与系数的关系,x1+x2=-,x1x2=,求出两根之和与两根之积,再根据完全平方式变形代入即可求解,是中档题.193解析:一元二次方程x23x10的一个根是x2,即可得3x210,所以3x21,再由根与系数的关系可得x1x23,所以x1x2(3x2)31=3.20-6试题解析: 是方程的两个实数根.故答案为: 21 5 试题分析:(1)化简此方程为,根据一元二次方程的根与系

13、数的关系,可知, ;(2)同(1)可知三角形的面积为: ,根据二次函数的性质可知面积的最大值为: = .22 分析:由两根关系,得x1+x2=5,x1x2=a,解方程得到x1x2=2,即可得到结论详解:由两根关系,得x1+x2=5,x1x2=a,由x12x22=10得:(x1+x2)(x1x2)=10,若x1+x2=5,即x1x2=2,(x1x2)2=(x1+x2)24x1x2=254a=4,a= 故答案为:235试题分析:根据根与系数的关系可知m+n=2,又知m是方程的根,所以可得m2+2m7=0,最后可将m2+3m+n变成m2+2m+m+n,最终可得答案 设m、n是一元二次方程x2+2x7

14、=0的两个根, m+n=2,m是原方程的根, m2+2m7=0,即m2+2m=7, m2+3m+n=m2+2m+m+n=72=52410试题分析:根据一元二次方程的解,由x2是一元二次方程x2+5x3=0的根,代入可得x22+5x23=0,即x22+5x2=3,然后根据题意2x1(x22+6x23)+a=4,可得2x1x2+a=4,再根据一元二次方程根与系数的关系x1+x2=-,x1x2=,由x1,x2是一元二次方程x2+5x3=0的两根,求得x1x2=3,即2(3)+a=4,解方程得a=10252008分析:根据题意知m、n是关于x的方程x2-2x-1=0的两不等的实数根;然后利用根与系数的

15、关系求得m+n=2;最后将m+n、m2、n2的值代入所求的代数式并求值即可详解:m、n是两个不相等的实数,且满足m2-2m=1,n2-2n=1,m、n是关于x的方程x2-2x-1=0的两不等的实数根,m+n=2;又m2-2m=1,n2-2n=1,m2=2m+1,n2=2n+1,2m2+4n2-4n+1994=2(2m+1)+4(2n+1)-4n+1994=4m+2+8n+4-4n+1994=4(m+n)+2000=42+2000=2008;故答案是:2008点拨:本题考查了代数式求值、根与系数的关系将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法26 试题解析:a,b是一元二次方程x2-6x+5=0的两个实数根,a+b=6,ab=5,

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1