1、2.5.2 向量在物理中的应用举例一、教学分析 向量与物理学天然相联.向量概念的原型就是物理中的力、速度、位以及几何中的有向线段等概念,向量是既有大小、又有方向的量,它与物理学中的力学、运动学等有着天然的联系,将向量这一工具应用到物理中,可以使物理题解答更简捷、更清晰.并且向量知识不仅是解决物理许多问题的有利工具,而且用数学的思想方法去审视相关物理现象,研究相关物理问题,可使我们对物理问题的认识更深刻.物理中有许多量,比如力、速度、加速度、位移等都是向量,这些物理现象都可以用向量来研究. 用向量研究物理问题的相关知识.(1)力、速度、加速度、位移等既然都是向量,那么它们的合成与分解就是向量的加
2、、减法,运动的叠加亦用到向量的合成;(2)动量是数乘向量;(3)功即是力与所产生位移的数量积. 用向量知识研究物理问题的基本思路和方法.通过抽象、概括,把物理现象转化为与之相关的向量问题;认真分析物理现象,深刻把握物理量之间的相互关系;利用向量知识解决这个向量问题,并获得这个向量的解;利用这个结果,对原物理现象作出合理解释,即用向量知识圆满解决物理问题.教学中要善于引导学生通过对现实原型的观察、分析和比较,得出抽象的数学模型.例如,物理中力的合成与分解是向量的加法运算与向量分解的原型.同时,注重向量模型的运用,引导解决现实中的一些物理和几何问题.这样可以充分发挥现实原型对抽象的数学概念的支撑作
3、用.二、教学目标1知识与技能:通过力的合成与分解的物理模型,速度的合成与分解的物理模型,掌握利用向量方法研究物理中相关问题的步骤。2过程与方法:明了向量在物理中应用的基本题型,进一步加深对所学向量的概念和向量运算的认识.3情感态度与价值观:通过对具体问题的探究解决,进一步培养学生的数学应用意识,提高应用数学的能力.体会数学在现实生活中的重要作用.养成善于发现生活中的数学,善于发现物理及其他科目中的数学及思考领悟各学科之间的内在联系的良好习惯.三、重点难点教学重点:1.运用向量的有关知识对物理中力的作用、速度的分解进行相关分析和计算.2.归纳利用向量方法解决物理问题的基本方法.教学难点:将物理中
4、有关矢量的问题转化为数学中向量的问题.四、教学设想(一)导入新课 思路1.(章头图引入)章头图中,道路、路标体现了向量与位移、速度、力等物理量之间的密切联系.章引言说明了向量的研究对象及研究方法.那么向量究竟是怎样应用于物理的呢?它就像章头图中的高速公路一样,是一条解决物理问题的高速公路.在学生渴望了解的企盼中,教师展示物理模型,由此展开新课. 思路2.(问题引入)你能举出物理中的哪些向量?比如力、位移、速度、加速度等,既有大小又有方向,都是向量,学生很容易就举出来.进一步,你能举出应用向量来分析和解决物理问题的例子吗?你是怎样解决的?教师由此引导:向量是有广泛应用的数学工具,对向量在物理中的
5、研究,有助于进一步加深对这方面问题的认识.我们可以通过对下面若干问题的研究,体会向量在物理中的重要作用.由此自然地引入新课.(二)应用示例探究一用向量法解决速度问题【例1】在风速为75()km/h的西风中,飞机以150 km/h的航速向西北方向飞行,求没有风时飞机的航速和航向.分析:解本题首先根据题意作图,再把物理问题转化为向量的有关运算求解.解:设=风速,va=有风时飞机的航行速度,vb=无风时飞机的航行速度,vb=va-.如图所示.变式训练 某人骑摩托车以20 km/h的速度向西行驶,感到风从正南方向吹来,而当其速度变为40 km/h时,他又感到风从西南方向吹来,求实际的风向和风速.图2解
6、:如图2所示.设v1表示20 km/h的速度,在无风时,此人感到的风速为-v1,实际的风速为v,那么此人所感到的风速为v+(-v1)=v-v1.令=-v1,=-2v1,实际风速为v.+=,=v-v1,这就是骑车人感受到的从正南方向吹来的风的速度.+=,=v-2v1,这就是当车的速度为40 km/h时,骑车人感受到的风速.由题意得DCA=45,DBAB,AB=BC,DCA为等腰三角形,DA=DC,DAC=DCA=45.DA=DC=BC=20.|v|=20 km/h.答:实际的风速v的大小是202 km/h,方向是东南方向.解析:(1)对于两个大小相等的共点力F1,F2,当它们的夹角为90,合力的
7、大小为20 N时,由三角形法则可知,这两个力的大小都是10 N;当它们的夹角为120时,由三角形法则可知力的合成构成一个等边三角形,因此合力的大小为10 N.思维辨析:未能将实际物理问题转化为向量问题典例一辆汽车在平直的公路上向西行驶,车上装着风速计和风向标,测得风向为东偏南30,风速为4 m/s,这时气象台报告实际风速为2 m/s.试求风的实际方向和汽车的速度大小.错解:设实际风速为v风,由题意知,车向正西行驶,所以风的实际方向为正东,|v车|=2 m/s.错因分析:依据物理知识,有三对相对速度,汽车对地的速度为v车地、风对车的速度为v风车、风对地的速度为v风地.风对地的速度可以看成车对地与
8、风对车的速度的合速度,即v风地=v风车+v车地.正解:根据向量加法的平行四边形法则可知,表示向量v风地的有向线段 是四边形ACDB的对角线.|AC|=4 m/s,ACD=30,|AD|=2 m/s,ADC=90.在RtADC中,|DC|=|AC|cos 30=2(m/s).即风向的实际方向是正南方向,汽车速度的大小为2(三)知能训练1.一艘船以4 km/h的速度沿着与水流方向成120的方向航行,已知河水流速为2 km/h,则经过小时,该船实际航程为( )A.2 km B.6 km C. km D.8 km图42.如图4,已知两个力的大小和方向,则合力的大小为 N;若在图示坐标系中,用坐标表示合
9、力F,则F=_.3.一艘船以5 km/h的速度向垂直于对岸的方向行驶,而该船实际航行的方向与水流方向成30角,求水流速度与船的实际速度.解答:1.B点评:由于学生还没有学习正弦定理和余弦定理,所以要通过作高来求.2. (5,4)图53.如图5所示,设表示水流速度,表示船垂直于对岸的速度,表示船的实际速度,AOC=30,|=5 km/h.因为OACB为矩形,所以|=|cot30=|cot30=538.66 km/h,|=10 km/h.答:水流速度为8.66 km/h,船的实际速度为10 km/h.点评:转化为数学模型,画出向量图,在直角三角形中解出.m/s.(四)课堂小结1.与学生共同归纳总结利用向量解决物理问题的步骤.问题的转化,即把物理问题转化为数学问题;模型的建立,即建立以向量为主体的数学模型;参数的获得,即求出数学模型的有关解理论参数值;问题的答案,即回到问题的初始状态,解释相关的物理现象.2.与学生共同归纳总结向量在物理中应用的基本题型.力、速度、加速度、位移都是向量;力、速度、加速度、位移的合成与分解对应相应向量的加减;)动量mv是数乘向量,冲量tF也是数乘向量;功是力F与位移s的数量积,即W=Fs.(五)作业