ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:105.50KB ,
资源ID:309074      下载积分:9 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-309074-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2018版高考一轮总复习数学(文)模拟演练 解答题专项训练5 WORD版含答案.DOC)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2018版高考一轮总复习数学(文)模拟演练 解答题专项训练5 WORD版含答案.DOC

1、解答题专项训练五1.已知抛物线C:x24y的焦点为F,过点K(0,1)的直线l与C相交于A,B两点,点A关于y轴的对称点为D.(1)证明:点F在直线BD上;(2)设,求直线BD的直线方程解(1)证明:设A(x1,y1),B(x2,y2),D(x1,y1),l的方程为ykx1,由得x24kx40,从而x1x24k,x1x24.直线BD的方程为yy1(xx1),即y(xx1),令x0,得y1,所以点F在直线BD上(2)因为(x1,y11)(x2,y21)x1x2(y11)(y21)84k2,故84k2,解得k,所以l的方程为4x3y30或4x3y30.又由(1)得x2x1,故直线BD的斜率为,因而

2、直线BD的方程为x3y30或x3y30.2已知动点P到直线l:x1的距离等于它到圆C:x2y24x10的切线长(P到切点的距离)记动点P的轨迹为曲线E.(1)求曲线E的方程;(2)点Q是直线l上的动点,过圆心C作QC的垂线交曲线E于A,B两点,设AB的中点为D,求的取值范围解(1)由已知得,圆心为C(2,0),半径r.设P(x,y),依题意可得|x1|,整理得y26x.故曲线E的方程为y26x.(2)设直线AB的方程为myx2,则直线CQ的方程为ym(x2),可得Q(1,3m)将myx2代入y26x并整理,可得y26my120,设A(x1,y1),B(x2,y2),则y1y26m,y1y212

3、,D(3m22,3m),|QD|3m23.|AB|2 ,所以2,故.3设椭圆C:1(ab0)的右焦点为F,过点F的直线l与椭圆C相交于A,B两点,直线l的倾斜角为45,2.(1)求椭圆C的离心率;(2)如果|AB|,求椭圆C的方程解(1)设A(x1,y1),B(x2,y2),由直线l的倾斜角为45及2,可知y10.直线l的方程为yxc,其中c,联立得(a2b2)y22b2cyb40,解得y1,y2.因为2,所以y12y2,即2,求得离心率e.(2)因为|AB|y2y1|,所以,由,得ba,所以a,得a3,b,所以椭圆C的方程为1.4如图,设抛物线y22px(p0)的焦点为F,抛物线上的点A到y

4、轴的距离等于|AF|1.(1)求p的值;(2)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M.求M的横坐标的取值范围解(1)由题意可得,抛物线上的点A到焦点F的距离等于点A到直线x1的距离,由抛物线的定义得1,即p2.(2)由(1)得,抛物线方程为y24x,F(1,0),可设A(t2,2t),t0,t1.因为AF不垂直于y轴,可设直线AF:xsy1(s0),由消去x,得y24sy40,故y1y24,所以B.又直线AB的斜率为,故直线FN的斜率为.从而得直线FN:y(x1),直线BN:y,所以N.设M(m,0),由A,M,N三点共线,得,于是

5、m.所以m2.经检验,m2满足题意综上,点M的横坐标的取值范围是(,0)(2,)5已知动点P到定点F(1,0)和到直线x2的距离之比为,设动点P的轨迹为曲线E,过点F作垂直于x轴的直线与曲线E相交于A、B两点,直线l:ymxn与曲线E交于C、D两点,与线段AB相交于一点(与A、B不重合)(1)求曲线E的方程;(2)当直线l与圆x2y21相切时,四边形ABCD的面积是否有最大值若有,求出其最大值及对应的直线l的方程;若没有,请说明理由解(1)设点P(x,y),由题意可得,整理可得:y21.曲线E的方程是y21.(2)设C(x1,y1),D(x2,y2),由已知可得|AB|.当m0时,不合题意当m

6、0时,由直线l与圆x2y21相切,可得1,即m21n2.联立消去y得x22mnxn210,4m2n24(n21)2m20,x1,x2,S四边形ABCD|AB|x2x1|,当且仅当2|m|,即m时等号成立,此时n,经检验可知,直线yx和直线yx符合题意6设椭圆1(a)的右焦点为F,右顶点为A.已知,其中O为原点,e为椭圆的离心率(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于点B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H.若BFHF,且MOAMAO,求直线l的斜率解(1)设F(c,0),由,即,可得a2c23c2,又a2c2b23,所以c21,因此a24.所以,椭圆的方程为

7、1.(2)设直线l的斜率为k(k0),则直线l的方程为yk(x2)设B(xB,yB),由方程组消去y,整理得(4k23)x216k2x16k2120.解得x2,或x,由题意得xB,从而yB.由(1)知,F(1,0),设H(0,yH),有F(1,yH),B.由BFHF,得BF0,所以0,解得yH.因此直线MH的方程为yx.设M(xM,yM),由方程组消去y,解得xM.在MAO中,MOAMAO |MA|MO|,即(xM2)2yxy,化简得xM1,即1,解得k或k.所以,直线l的斜率为或.7如图,椭圆E:1(ab0)的离心率是,点P(0,1)在短轴CD上,且1.(1)求椭圆E的方程;(2)设O为坐标

8、原点,过点P的动直线与椭圆交于A,B两点是否存在常数,使得为定值?若存在,求的值;若不存在,请说明理由解(1)由已知,点C,D的坐标分别为(0,b),(0,b)又点P的坐标为(0,1),且1,于是解得a2,b.所以椭圆E的方程为1.(2)当直线AB的斜率存在时,设直线AB的方程为ykx1,点A,B的坐标分别为(x1,y1),(x2,y2)联立得(2k21)x24kx20.其判别式(4k)28(2k21)0,所以x1x2,x1x2.从而,x1x2y1y2(1)(1k2)x1x2k(x1x2)12.所以,当1时,23.此时,3为定值当直线AB的斜率不存在时,直线AB即为直线CD.此时,213.故存

9、在常数1,使得为定值3.8已知椭圆C:1(ab0)的长轴长为4,焦距为2.(1)求椭圆C的方程;(2)过动点M(0,m)(m0)的直线交x轴于点N,交C于点A,P(P在第一象限),且M是线段PN的中点过点P作x轴的垂线交C于另一点Q,延长QM交C于点B.设直线PM,QM的斜率分别为k,k,证明:为定值;求直线AB的斜率的最小值解(1)设椭圆的半焦距为c,由题意知2a4,2c2,所以a2,b,所以椭圆C的方程为1.(2)证明:设P(x0,y0)(x00,y00)由M(0,m),可得P(x0,2m),Q(x0,2m)所以直线PM的斜率k.直线QM的斜率k.此时3.所以为定值3.设A(x1,y1),B(x2,y2)直线PA的方程为ykxm,直线QB的方程为y3kxm.联立整理得(2k21)x24mkx2m240.由x0x1,可得x1.所以y1kx1mm.同理x2,y2m.所以x2x1,y2y1mm,所以kAB.由m0,x00,可知k0,所以6k2,等号当且仅当k时取得此时,即m,符合题意所以直线AB的斜率的最小值为.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3