1、解答题专项训练三1.已知数列an的首项a11,前n项和为Sn,且数列是公差为2的等差数列(1)求数列an的通项公式;(2)若bn(1)nan,求数列bn的前n项和Tn.解(1)由已知条件可得1(n1)22n1,Sn2n2n.当n2时,anSnSn12n2n4n3,当n1时,a1S11,而4131,an4n3.(2)由(1)可得bn(1)nan(1)n(4n3),当n为偶数时,Tn1591317(4n3)42n,当n为奇数时,n1为偶数,TnTn1bn12(n1)(4n1)2n1.综上,Tn2已知等差数列an的公差不为零,其前n项和为Sn,aS3,且S1,S2,S4成等比数列(1)求数列an的通
2、项公式an;(2)记Tna1a5a9a4n3,求Tn.解(1)设数列an的公差为d,由aS3,得3a2a,故a20或a23.由S1,S2,S4成等比数列,得SS1S4.又S1a2d,S22a2d,S44a22d.故(2a2d)2(a2d)(4a22d)若a20,则d22d2,解得d0,不符合题意若a23,则(6d)2(3d)(122d),解得d2或d0(不符合题意,舍去)因此数列an的通项公式为ana2(n2)d2n1.(2)由(1)知a4n38n7,故数列a4n3是首项为1,公差为8的等差数列从而Tn(a1a4n3)(8n6)4n23n.3设Sn为数列an的前n项和,已知a12,对任意nN*
3、,都有2Sn(n1)an.(1)求数列an的通项公式;(2)若数列的前n项和为Tn,求证:Tn0,所以11.因为f(n)在N*上是递减函数,所以1在N*上是递增的,当n1时,Tn取最小值,所以Tn1.4设数列an的前n项和为Sn,对任意的正整数n,都有Sn2ann3成立(1)求证:数列an1为等比数列;(2)求数列nan的前n项和Tn.解(1)证明:当n1时,S12a113,得a12,由Sn2ann3,得Sn12an1n13,两式相减得an12an12an1,即an12an1,2,而a111,数列an1是首项为1,公比为2的等比数列(2)由(1)得an112n12n1,即an2n11,nann
4、(2n11)n2n1n,Tn(1201)(2212)(3223)(n2n1n)(120221322n2n1)(123n)(120221322n2n1).令Vn120221322n2n1,则2Vn121222323n2n,两式相减得Vn121222n1n2nn2n2n1n2n,Vnn2n2n1(n1)2n1,Tn(n1)2n1.5设函数f(x)sinx的所有正的极小值点从小到大排成的数列为xn(1)求数列xn的通项公式;(2)令bn,设数列的前n项和为Sn,求证Sn02kx2k(kZ),由f(x)02kx2k(kZ),当x2k(kZ)时,f(x)取得极小值,xn2n(nN*)(2)证明:bnn,3,Sn33,Sn0,故有20n2400n7200,解得2n0),由题意,得解得所以an2n.(2)因为bn,所以Tn,Tn,所以Tn,故Tn.8已知数列an满足:a13,an1an2n2.(1)证明:数列是等差数列;(2)证明:1.证明(1)由an1an2n2,得2,即2,数列是首项为3,公差为2的等差数列(2)由(1)知,3(n1)22n1,ann(2n1),1,1.