1、高考资源网() 您身边的高考专家专题一:集合、常用逻辑用语、不等式、函数与导数第五讲 导数及其应用【最新考纲透析】1.导数概念及其几何意义(1)了解导数概念的实际背景。(2)理解导数的几何意义。2导数的运算(1)能根据导数定义求函数的导数。(2)能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。(3)能求简单的复合函数(仅限于形如的复合函数)的导数。3导数在研究函数中的应用(1)了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次)。(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多
2、项式函数一般不超过三次);会求闭区间了函数的最大值、最小值(其中多项式函数一般不超过三次)。4生活中的优化问题会利用导数解决某些实际问题5定积分与微积分基本定理(1)了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念。(2)了解微积分基本定理的含义。【核心要点突破】要点考向1:利用导数研究曲线的切线考情聚焦:1利用导数研究曲线的切线是导数的重要应用,为近几年各省市高考命题的热点。2常与函数的图象、性质及解析几何知识交汇命题,多以选择、填空题或以解答题中关键一步的形式出现,属容易题。考向链接:1导数的几何意义函数在处的导数的几何意义是:曲线在点处的切线的斜率(瞬时速度就是位移函数对时间
3、的导数)。2求曲线切线方程的步骤:(1)求出函数在点的导数,即曲线在点处切线的斜率;(2)在已知切点坐标和切线斜率的条件下,求得切线方程为。注:当曲线在点处的切线平行于轴(此时导数不存在)时,由切线定义可知,切线方程为;当切点坐标未知时,应首先设出切点坐标,再求解。例1:(2010 海南高考理科T3)曲线在点处的切线方程为( )(A) (B) (C) (D)【命题立意】本题主要考查导数的几何意义,以及熟练运用导数的运算法则进行求解.【思路点拨】先求出导函数,解出斜率,然后根据点斜式求出切线方程.【规范解答】选A.因为 ,所以,在点处的切线斜率,所以,切线方程为,即,故选A.要点考向2:利用导数
4、研究导数的单调性考情聚焦:1导数是研究函数单调性有力的工具,近几年各省市高考中的单调性问题,几乎均用它解决。2常与函数的其他性质、方程、不等式等交汇命题,且函数一般为含参数的高次、分式或指、对数式结构,多以解答题形式考查,属中高档题目。考向链接:利用导数研究函数单调性的一般步骤。(1)确定函数的定义域;(2)求导数;(3)若求单调区间(或证明单调性),只需在函数的定义域内解(或证明)不等式0或0。若已知的单调性,则转化为不等式0或0在单调区间上恒成立问题求解。例2:(2010山东高考文科21)已知函数(1)当时,求曲线在点处的切线方程;(2)当时,讨论的单调性.【命题立意】本题主要考查导数的概
5、念、导数的几何意义和利用导数研究函数性质的能力.考查分类讨论思想、数形结合思想和等价变换思想.【思路点拨】(1)根据导数的几何意义求出曲线在点处的切线的斜率;(2)直接利用函数与导数的关系讨论函数的单调性,同时应注意分类标准的选择.【规范解答】(1) 当所以 因此, ,即曲线又所以曲线(2)因为,所以 ,令当时,所以 当时,0,此时,函数单调递减;当时,0,此时,函数单调递增.当时,由,即 ,解得. 当时, , 恒成立,此时,函数在(0,+)上单调递减; 当时, ,时,,此时,函数单调递减时,0,此时,函数单调递增时,此时,函数单调递减 当时,由于,时,,此时,函数单调递减:时,1时,2x-2
6、0,从而(x)0,从而函数F(x)在1,+)是增函数。又F(1)=F(x)F(1)=0,即f(x)g(x).()证明:(1)若(2)若根据(1)(2)得由()可知,,则=,所以,从而.因为,所以,又由()可知函数f(x)在区间(-,1)内是增函数,所以,即2。要点考向4:利用导数研究函数的图象考情聚焦:1该考向由于能很好地综合考查函数的单调性、极值(最值)、零点及数形结合思想等重要考点,而成为近几年高考命题专家的新宠。2常与函数的其他性质、方程、不等式、解析几何知识交汇命题,且函数一般为含参数的高次、分式、指、对数式结构,多以解答题中压轴部分出现。属于较难题。例4:(2010福建高考理科20)
7、()已知函数f(x)=x3-x,其图像记为曲线C. (i)求函数f(x)的单调区间; (ii)证明:若对于任意非零实数x1,曲线C与其在点P1(x1,f(x1)处的切线交于另一点P2(x2,f(x2).曲线C与其在点P2处的切线交于另一点P3 (x3 f(x3)),线段P1P2,P2P3与曲线C所围成封闭图形的面积分别记为S1,S2,则为定值:()对于一般的三次函数g(x)=ax3+bx2+cx+d(a0),请给出类似于()(ii)的正确命题,并予以证明。【命题立意】本小题主要考查函数、导数、定积分等基础知识,考查抽象概括、推理论证、运算求解能力,考查函数与方程思想、数形结合思想、化归转化思想
8、、特殊与一般的思想。【思路点拨】第一步(1)利用导数求解函数的单调区间,(2)利用导数求解切线的斜率,写出切线方程,并利用定积分求解及其比值;第二步利用合情推理的方法对问题进行推广得到相关命题,并利用平移的方法进行证明。【规范解答】() (i),令得到,令有,因此原函数的单调递增区间为和;单调递减区间为;(ii),因此过点的切线方程为:,即,由得,所以或,故,进而有,用代替,重复上面的计算,可得和,又,因此有。()【命题】若对于任意函数的图像为曲线,其类似于(I)(ii)的命题为:若对任意不等于的实数,曲线与其在点处的切线交于另一点,曲线与其在点处的切线交于另外一点,线段、与曲线所围成面积为,
9、则。【证明】对于曲线,无论如何平移,其面积值是恒定的,所以这里仅考虑的情形,因此过点的切线方程为:,联立,得到:,化简:得到从而所以同样运用(i)中方法便可以得到所以。【方法技巧】函数导数的内容在历届高考中主要切线方程、导数的计算,利用导数判断函数单调性、极值、最值等问题,试题还与不等式、三角函数、数列、立几、解几等知识的联系,类型有交点个数、恒成立问题等,其中渗透并充分利用构造函数、分类讨论、转化与化归、数形结合等重要的思想方法,主要考查导数的工具性作用。【高考真题探究】1.(2010全国高考卷文科7)若曲线在点处的切线方程是,则(A) (B) (C) (D) 【命题立意】本题考查了导数的几
10、何意义和曲线的切线方程知识。【思路点拨】由题意知,曲线在点处的切线的斜率为1,根据导数的几何意义得y在x=0 处的导数为1,再把(0,b)代入切线方程可以解出a 、b的值。 【规范解答】 选A,, 在点处的切线方程是。斜率为1,所以,所以.2(2010江西高考理科)如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记时刻五角星露出水面部分的图形面积为,则导函数的图像大致为【命题立意】本题将各知识点有机结合,属创新题型,主要考查对函数的图像识别能力,灵活分析问题和解决问题的能力,考查分段函数,考查分段函数的导数,考查分类讨论的数学思想,考查函数的应用,考查平面图形面积的计算,考查数形结
11、合的思维能力【思路点拨】本题结合题意及图像的变化情况可用排除法;也可先求面积的函数,再求其导数,最后结合图像进行判断.【规范解答】选A方法一:在五角星匀速上升过程中露出的图形部分的面积共有四段不同变化情况,第一段和第三段的变化趋势相同,只有选项A、C符合要求,从而先排除B、D,在第二段变化中,面积的增长速度显然较慢,体现在导函数图像中其图像应下降,排除选项C,故选A. 方法二:设正五角星的一个顶点到内部较小正五边形的最近边的距离为1,且设,则依据题意可得:其导函数 故选A.【方法技巧】从题设条件出发,结合所学知识点,根据“四选一”的要求,逐步剔除干扰项,从而得出正确的判断.这种方法适应于定性型
12、或不易直接求解的选择题.当题目中的变化情况较多时,先根据某些条件在选择支中找出明显与之矛盾的,予以排除,再根据另一些条件在缩小的选择支的范围内找出矛盾,这样逐步筛选,直到得出正确的选择.它与特例法、图解法等结合使用是解选择题的常用方法,近几年高考选择题中考查较多.3(2010全国高考卷理科10)若曲线在点处的切线与两个坐标围成的三角形的面积为18,则来(A)64 (B)32 (C)16 (D)8【命题立意】本题主要考查了导数的几何意义,曲线的切线方程求法,考查考生的运算求解能力【思路点拨】先求出切线方程,然后表示出切线与两个坐标围成的三角形的面积。【规范解答】选A,所以曲线在点处的切线: 所以
13、, 【方法技巧】利用导数解决切线问题有两种类型:(1)“在”曲线上一点处的切线问题,先对函数求导,代入点的横坐标得到斜率。(2)“过”曲线上一点的切线问题,此时该点未必是切点,故应先设切点,再求切点坐标。4(2010北京高考理科8)已知函数()=In(1+)-+, (0)。()当=2时,求曲线=()在点(1,(1)处的切线方程;()求()的单调区间。【命题立意】本题考查了导数的应用,考查利用导数求切线方程及单调区间。解决本题时一个易错点是忽视定义域。【思路点拨】(1)求出,再代入点斜式方程即可得到切线方程;(2)由讨论的正负,从而确定单调区间。【规范解答】(I)当时, 由于, 所以曲线在点处的
14、切线方程为 即 (II),.当时,.所以,在区间上,;在区间上,.故的单调递增区间是,单调递减区间是.当时,由,得,所以,在区间和上,;在区间上,故的单调递增区间是和,单调递减区间是.当时,故的单调递增区间是.当时,得,.所以在区间和上,;在区间上,故得单调递增区间是和,单调递减区间是【方法技巧】(1)过的切线方程为。(2)求单调区间时要在定义域内讨论内的正负。5(2010全国高考卷理科22)设函数()证明:当时,;()设当时,求a的取值范围【命题立意】本题考查了导数的单调性、极值等知识,结合不等式考查推理论证能力、运算求解能力,考查分类讨论思想、化归与转化思想。【思路点拨】()可以构造函数,
15、利用导数单调性,求当时的最值证明不等式成立,()可结合()的结论和方法证明,要注意对a分类讨论.【规范解答】()当时,当且仅当 令 , 则当时, 是增函数; 当时,是减函数;于是g(x)在x=0处达到最小值,因而当时,即所以当x-1时,()由题设 ,此时当a时,由知x当时,所以h(x)h(0)=0,即综上,a的取值范围是0,.6(2010江苏高考20)设是定义在区间上的函数,其导函数为。如果存在实数和函数,其中对任意的都有0,使得,则称函数具有性质。(1)设函数,其中为实数。(i)求证:函数具有性质; (ii)求函数的单调区间。(2)已知函数具有性质,给定设为实数,且,若|1时,所以此时在区间
16、上递增;当时,图像开口向上,对称轴,方程的两根为:,而 当时,故此时在区间 上递减;同理得:在区间上递增。综上所述,当时,在区间上递增; 当时,在上递减;在上递增。(方法二)当时,对于, 所以,故此时在区间上递增;当时,图像开口向上,对称轴,方程的两根为:,而 当时,故此时在区间 上递减;同理得:在区间上递增。综上所述,当时,在区间上递增; 当时,在上递减;在上递增。(2)(方法一)由题意,得:又对任意的都有0,所以对任意的都有,在上递增。又。当时,且,若,(不合题意)。综合以上讨论,得所求的取值范围是(0,1)。(方法二)由题设知,的导函数,其中函数对于任意的都成立。所以,当时,从而在区间上
17、单调递增。当时,有,得,同理可得,所以由的单调性知、,从而有|0)的图像在点(ak,ak2)处的切线与x轴的交点的横坐标为ak+1,,若a1=16,则a1+a3+a5的值是_9函数的单调减区间为 。三、解答题(10、11小题各15分,12题16分)10已知函数f(x)=x3-3ax-1,a0.(1)求f(x)的单调区间;(2)若f(x)在x=-1处取得极值,直线y=m与y=f(x)的图象有三个不同的交点,求m的取值范围.11(2010安徽安庆高三二模(文)已知函数.当时,求函数的最小值;若在上是单调函数,求的取值范围.12(2010届北京市朝阳区高三一模(文)已知函数,()若函数在处取得极值,
18、试求的值,并求在点处的切线方程;()设,若函数在上存在单调递增区间,求的取值范围参考答案1C2D3A4C5C6C78【命题立意】本题考查导数的几何意义、函数的切线方程以及数列的通项等内容。【思路点拨】先由导数的几何意义求得函数y=x2(x0)的图像在点(ak,ak2)处的切线的斜率,然后求得切线方程,再由,即可求得切线与x轴交点的横坐标。【规范解答】由y=x2(x0)得,所以函数y=x2(x0)在点(ak,ak2)处的切线方程为:当时,解得,所以.【答案】219【解析】 考查利用导数判断函数的单调性。,由得单调减区间为。亦可填写闭区间或半开半闭区间。【答案】10【解析】(1)f(x)=3x2-
19、3a=3(x2-a),当a0.当a0时,f(x)的单调增区间为(-,+).(2)f(x)在x=-1处取得极值,f(-1)=3(-1)2-3a=0,a=1.f(x)=x3-3x-1.f(x)=3x2-3,由f(x)=0解得x1=-1,x2=1,由(1)中f(x)的单调性可知,f(x)在x=-1处取得极大值f(-1)=1,在x=1处取得极小值f(1)=-3.直线y=m与函数y=f(x)的图象有三个不同的交点,又f(-3)=-191,结合f(x)的单调性可知,m的取值范围是(-3,1).11解析:(1)当时, 2分令得或(,舍去负值)。 3分函数及导数的变化情况如下表:当时,函数的最小值是 6分(2
20、), 7分令要使在上为单调函数,只需对,都有或, 8分当时,恒成立即恒成立; 10分当时,恒成立;12分综上所述:当时,在上为单调函数 13分12解析:()=.因为函数在处取得极值,所以,解得.于是函数,,.函数在点处的切线的斜率,则在点处的切线方程为. 6分()当时,是开口向下的抛物线,要使在上存在子区间使,应满足或解得,或,所以的取值范围是14分【备课资源】1(2008全国)设曲线在点处的切线与直线平行,则( )A1 B C D【解析】选A.,于是切线的斜率,有2.(2009江西高考)设函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1)处的切线方程为y=2x+1,则曲线y=f
21、(x)在点 (1,f(1))处切线的斜率为( )【解析】选A.由已知g(1)=2,而f(x)=g(x)+2x,所以f(1)=g(1)+21=4.3.若函数y=f(x)的导函数在区间a,b上是增函数,则函数y=f(x)在区间a,b上的图象可能是( )【解析】选A.因为函数y=f(x)的导函数y=f(x)在区间a,b上是增函数,即在区间a,b上各点处的斜率k是递增的,由图易知,选A.4.已知函数f(x)满足f(x)=f(-x),且当x(-,)时,f(x)=x+sinx,则( )(A)f(1)f(2)f(3)(B)f(2)f(3)f(1)(C)f(3)f(2)f(1)(D)f(3)f(1)0,a2-
22、a-20,解得a2或a-1.答案:a|a26.(2009马鞍山模拟)由直线x=1,x=2,曲线y=sinx及x轴所围图形的面积为_.【解析】由已知方程=cos1-(2cos21-1)=1+cos1-2cos21答案:1+cos1-2cos217.已知函数(1)求的导数;(2)求证:不等式sin3xx3cosx在(0,上恒成立;(3)求的最大值.9.(2009马鞍山模拟)已知函数f(x)=x2-alnx,(1)若函数f(x)在x=2处的切线方程为y=x+b,求a,b的值;(2)若函数f(x)在(1,+)上是增函数,求实数a的取值范围;(3)讨论方程f(x)=0解的个数,并说明理由.【解析】(1)
23、f(2)=1,a=2,(2,f(2)在直线y=x+b上,b=f(2)-2=2-2ln2-2=-2ln2.10.(2009芜湖模拟)若存在实常数k和b,使得函数f(x)和g(x)对其定义域上的任意实数x分别满足:f(x)kx+b和g(x)kx+b,则称直线l:y=kx+b为f(x)和g(x)的“隔离直线”.已知h(x)=x2,(x)=2elnx(其中e为自然对数的底数).(1)求F(x)=h(x)-(x)的极值;(2)函数h(x)和(x)是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.11.(2009山东高考)已知函数f(x)=ax3+bx2+x+3,其中a0.(1)当a,b
24、满足什么条件时,f(x)取得极值?(2)已知a0.且f(x)在区间(0,1上单调递增,试用a表示出b的取值范围.【解析】(1)由已知得f(x)=ax2+2bx+1,令f(x)=0得ax2+2bx+1=0.若f(x)可取得极值,方程ax2+2bx+1=0必须有解,其中=4b2-4a.当=(2b)2-4a0时无极值.当=(2b)2-4a0,即b2a时.f(x)=ax2+2bx+1=0有两个不同的解,即因此f(x)=a(x-x1)(x-x2),当a0时,f(x),f(x)随x的变化情况如下表:由此表可知f(x)在点x1,x2处分别取得极大值和极小值.当a0时, f(x),f(x)随x的变化情况如下表:由此表可知f(x)在点x1,x2处分别取得极大值和极小值.综上所述,当a和b满足b2a时,f(x)能取得极值.- 29 - 版权所有高考资源网