收藏 分享(赏)

12-13学年高二数学:1.3.3等比数列的前N项和1 学案(北师大版必修5).doc

上传人:高**** 文档编号:29244 上传时间:2024-05-23 格式:DOC 页数:2 大小:66KB
下载 相关 举报
12-13学年高二数学:1.3.3等比数列的前N项和1 学案(北师大版必修5).doc_第1页
第1页 / 共2页
12-13学年高二数学:1.3.3等比数列的前N项和1 学案(北师大版必修5).doc_第2页
第2页 / 共2页
亲,该文档总共2页,全部预览完了,如果喜欢就下载吧!
资源描述

1、第3课时等比数列的前n项和知能目标解读1.掌握等比数列的前n项和公式的推导方法-错位相减法,并能用其思想方法求某类特殊数列的前n项和.2.掌握等比数列前n项和公式以及性质,并能应用公式解决有关等比数列前n项的问题.在应用时,特别要注意q=1和q1这两种情况.3.能够利用等比数列的前n项和公式解决有关的实际应用问题.重点难点点拨重点:掌握等比数列的求和公式,会用等比数列前n项和公式解决有关问题.难点:研究等比数列的结构特点,推导等比数列的前n项和的公式及公式的灵活运用.学习方法指导1.等比数列的前n项和公式(1)设等比数列an,其首项为a1,公比为q,则其前n项和公式为 na1(q=1)Sn=

2、.(q1)也就是说,公比为q的等比数列的前n项和公式是q的分段函数的一系列函数值,分段的界限是在q=1处.因此,使用等比数列的前n项和公式,必须要弄清公比q是可能等于1还是不等于1,如果q可能等于1,则需分q=1和q1进行讨论.(2)等比数列an中,当已知a1,q(q1),n时,用公式Sn=,当已知a1,q(q1),an时,用公式Sn=.2.等比数列前n项和公式的推导除课本上用错位相减法推导求和公式外,还可以用下面的方法推导.(1)合比定理法由等比数列的定义知:=q.当q1时,=q,即=q.故Sn=.当q=1时,Sn=na1.(2)拆项法Sn=a1+a1q+a1q2+a1qn-1=a1+q(a

3、1+a1q+a1qn-2)=a1+qSn-1=a1+q(Sn-an)当q1时,Sn=.当q=1时,Sn=na1.(3)利用关系式Sn-Sn-1=an(n2)当n2时,Sn=a1+a2+a3+an=a1+q(a1+a2+an-1)=a1+qSn-1Sn=a1+q(Sn-an)即(1-q)Sn=a1(1-qn)当q1时,有Sn=,当q=1时,Sn=na1.注意:(1)错位相减法,合比定理法,拆项法及an与Sn的关系的应用,在今后解题中要时常用到,要领会这些技巧.(2)错位相减法适用于an为等差数列,bn为等比数列,求anbn的前n项和.3.等比数列前n项和公式的应用(1)衡量等比数列的量共有五个:

4、a1,q,n,an,Sn.由方程组知识可知,解决等比数列问题时,这五个量中只要已知其中的任何三个,就可以求出其他两个量.(2)公比q是否为1是考虑等比数列问题的重要因素,在求和时,注意分q=1和q1的讨论.4.等比数列前n项和公式与函数的关系(1)当公比q1时,令A=,则等比数列的前n项和公式可写成Sn=-Aqn+A的形式.由此可见,非常数列的等比数列的前n项和Sn是由关于n的一个指数式与一个常数的和构成的,而指数式的系数与常数项互为相反数.当公比q=1时,因为a10,所以Sn=na1是n的正比例函数(常数项为0的一次函数).(2)当q1时,数列S1,S2,S3,Sn,的图像是函数y=-Aqx+A图像上的一群孤立的点.当q=1时,数列S1,S2,S3,Sn,的图像是正比例函数y=a1x图像上的一群孤立的点.知能自主梳理1.等比数列前n项和公式(1)等比数列an的前n项和为Sn,当公比q1时,Sn=;当q=1时,Sn=.(2)推导等比数列前n项和公式的方法是.2.公式特点(1)若数列an的前n项和Sn=p(1-qn)(p为常数),且q0,q1,则数列an为.(2)在等比数列的前n项和公式中共有a1,an,n,q,Sn五个量,在这五个量中知求.答案1.(1)na1(2)错位相减法2.(1)等比数列(2)三二

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3