1、京改版八年级数学上册第十章分式同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、化简的结果是()ABCD2、甲、乙两人分别从距目的地6km和10km的两地同时出发甲、乙的速度比是3:4,结果甲比乙提
2、前20min到达目的地,求甲、乙的速度若设甲的速度为3xkm/h,则可列方程为()ABCD3、计算(a2)3a2a3a2a3的结果是()A2a5aB2a5Ca5Da64、下列运算正确的是()ABCD5、下列运算中,错误的是()ABCD6、在一段坡路,小明骑自行车上坡的速度为每小时v1千米,下坡时的速度为每小时v2千米,则他在这段路上、下坡的平均速度是每小时()A千米B千米C千米D无法确定7、若分式 的值为0,则x 的值是()A2B0C-2D-58、化简的结果为()ABCD9、关于x的分式方程1的解为正数,则字母a的取值范围为()Aa1Ba1Ca1Da110、下列等式成立的是()A(3)29B(
3、3)2Ca14Da2b6第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、计算:_2、关于的分式方程的解为正数,则的取值范围是_3、已知分式化简后的结果是一个整式,则常数=_4、若关于x的分式方程的解是正数,则k的取值范围是_5、若,则的值等于_三、解答题(5小题,每小题10分,共计50分)1、已知,求的值2、解分式方程:3、计算:(1);(2)4、计算:(1)(3)0()2+(1)2n(2)(m2)n(mn)3mn2(3)x(x2x1)(4)(3a)2a4+(2a2)3(5)(9)3()3()35、已知T(1)化简T;(2)若正方形ABCD的边长为a,且它的面积为9,求
4、T的值-参考答案-一、单选题1、D【解析】【分析】最简公分母为,通分后求和即可【详解】解:的最简公分母为,通分得故选D【考点】本题考查了分式加法运算解题的关键与难点是找出通分时分式的最简公分母2、D【解析】【分析】求的是速度,路程明显,一定是根据时间来列等量关系,本题的关键描述语是:甲比乙提前20分钟到达目的地等量关系为:乙走10千米用的时间-甲走6千米用的时间=h,解题时注意单位换算【详解】解:设甲的速度为,则乙的速度为根据题意,得故选:D【考点】本题考查由实际问题抽象出分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键3、D【解析】【详解】【分析】先分别进行幂的乘方、同
5、底数幂的乘法、同底数幂的除法运算,然后再进行合并同类项即可.【详解】原式=a23+a2+3-a2-(-3)=a6+a5-a5=a6,故选D.【考点】本题考查了有关幂的运算,熟练掌握“幂的乘方,底数不变,指数相乘”、“同底数幂的乘法,底数不变,指数相加”、“同底数幂的除法,底数不变,指数相减”是解题的关键.4、D【解析】【分析】直接利用同底数幂的乘除运算法则、积的乘方运算法则、分式运算法则分别化简得即可【详解】解:A,故此选项错误,不符合题意;B,故此选项错误,不符合题意;C,故此选项错误,不符合题意;D,故此选项正确,符合题意故选:D【考点】本题考查了整式的运算和分式的运算,解题关键是熟记相关
6、运算法则,准确进行计算,注意运算顺序5、D【解析】【分析】分式的基本性质是分式的分子、分母同时乘以或除以同一个非0的数或式子,分式的值不变据此作答【详解】解:A、分式的分子、分母同时乘以同一个非0的数c,分式的值不变,故A正确;B、分式的分子、分母同时除以同一个非0的式子(a+b),分式的值不变,故B正确;C、分式的分子、分母同时乘以10,分式的值不变,故C正确;D、,故D错误故选D【考点】本题考查了分式的基本性质无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为06、C【解析】【详解】平均速度=总路程总时间,题中没有单程,可设单
7、程为1,那么总路程为2依题意得:2()=2=千米故选C【考点】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系当题中没有一些必须的量时,为了简便,可设其为17、A【解析】【分析】根据分式的值为0的条件:分子为0且分母不为0,得出混合组,求解得出x的值【详解】解: 根据题意得 :x-2=0,且x+50,解得 x=2故选:A【考点】本题考查了分式的值为零的条件分式值为零的条件是分子等于零且分母不等于零8、C【解析】【分析】利用分式的加法和除法运算法则进行计算【详解】解:原式故选:C【考点】本题考查分式的化简,解题的关键是掌握分式的运算法则9、B【解析】【详解】解:分式方程去分母
8、得:2x-a=x+1,解得:x=a+1根据题意得:a+10且a+1+10,解得:a-1且a-2即字母a的取值范围为a-1故选B点睛:本题考查了分式方程的解,本题需注意在任何时候都要考虑分母不为010、B【解析】【分析】结合幂的乘方与积的乘方的概念和运算法则进行求解即可【详解】解:A、(-3)2=9-9,本选项错误;B、(-3)-2=,本选项正确;C、(a-12)2=a-24a14,本选项错误;D、(-a-1b-3)-2=a2b6-a2b6,本选项错误故选B【考点】本题考查了幂的乘方与积的乘方,解答本题的关键在于熟练掌握该知识点的概念和运算法则二、填空题1、5【解析】【分析】根据绝对值和零指数幂
9、进行计算即可【详解】解:,故答案为:5【考点】本题考查了绝对值和零指数幂的计算,熟练掌握定义是解题的关键2、且【解析】【分析】直接解分式方程,进而利用分式方程的解是正数得出的取值范围,进而结合分式方程有意义的条件分析得出答案【详解】去分母得:,解得:,解得:,当时,不合题意,故且故答案为且【考点】此题主要考查了分式方程的解,注意分式的解是否有意义是解题关键3、【解析】【分析】依题意可知,分式化简后是一个整式,说明分式可以由公约数“x+1”,即分式的分子部分可以化成的形式,将这个分子展开与原式中分子部分联立,求取常数的值即可.【详解】分式化简后的结果是一个整式分式的分子部分可以化为:解得:,故答
10、案为:【考点】本题考查了分式的变形求字母的值,解决本题的关键是正确的将分式的分子部分进行变形,使得分子部分含有(x+1).4、且【解析】【分析】根据题意,将分式方程的解用含的表达式进行表示,进而令,再因分式方程要有意义则,进而计算出的取值范围即可【详解】解: 根据题意且k的取值范围是且【考点】本题主要考查了分式方程的解及分式方程有意义的条件、一元一次不等式组的求解,熟练掌握相关计算方法是解决本题的关键5、【解析】【分析】先把分式进行化简,再代入求值【详解】=当a=时,原式=故答案为【考点】分式进行约分时,应先把分子、分母中的多项式进行分解因式,正确分解因式是掌握约分的关键三、解答题1、-4【解
11、析】【分析】根据已知求出xy=-2,再将所求式子变形为,代入计算即可【详解】解:,【考点】本题考查了代数式求值,解题的关键是掌握分式的运算法则和因式分解的应用2、【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到的值,经检验即可得到分式方程的解【详解】解:去分母得,解得,经检验,是原方程的解所以,原方程的解为:【考点】本题主要考查了分式方程的解法解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根3、(1);(2)【解析】【分析】(1)先计算有理数的乘方,零次幂,负整数指数幂的运算,再计算乘法运算,最后计算加减,从而可得答案;(2)先计算多项
12、式乘以多项式,单项式乘以多项式,再合并同类项即可.【详解】解:(1) (2) 【考点】本题考查的是零次幂与负整数指数幂的含义,整式的乘法运算,掌握零次幂与负整数指数幂的含义及整式的乘法运算的运算法则是解题的关键.4、 (1)-7;(2)mn+5n3;(3)x3x2x;(4)a6;(5)8.【解析】【分析】(1)根据零指数幂、负整数指数幂可以解答本题;(2)根据积的乘方和同底数幂的乘除法可以解答本题;(3)根据单项式乘多项式可以解答本题;(4)根据积的乘方和同底数幂的乘法可以解答本题;(5)根据幂的乘方可以解答本题【详解】(1)(3)0()2+(1)2n19+17;(2)(m2)n(mn)3mn2m2nm3n3mn2mn+5n3;(3)x(x2x1)x3x2x;(4)(3a)2a4+(2a2)39a2a4+(8a6)9a6+(8a6)a6;(5)(9)3()3()38【考点】本题考查整式的混合运算、幂的乘方、负整数指数幂等,解答本题的关键是明确整式混合运算的计算方法5、(1);(2)【解析】【分析】(1)原式通分并利用同分母分式的加法法则计算即可求出值;(2)由正方形的面积求出边长a的值,代入计算即可求出T的值【详解】(1)T;(2)由正方形的面积为9,得到a3,则T【考点】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键