1、第3讲坐标系与参数方程1(2013江苏卷)在平面直角坐标系xOy中,直线l的参数方程为(t为参数),曲线C的参数方程为(为参数)试求直线l和曲线C的普通方程,并求出它们的公共点的坐标解因为直线l的参数方程为(t为参数),由xt1得tx1,代入y2t,得到直线l的普通方程为2xy20.同理得到曲线C的普通方程为y22x.联立方程组解得公共点的坐标为(2,2),.2(2011江苏卷)在平面直角坐标系xOy中,求过椭圆(为参数)的右焦点,且与直线(t为参数)平行的直线的普通方程解由题意知,椭圆的长半轴长为a5,短半轴长b3,从而c4,所以右焦点为(4,0),将已知直线的参数方程化为普通方程得x2y2
2、0,故所求的直线的斜率为,因此所求的方程为y(x4),即x2y40.3(2010江苏卷)在极坐标系中,已知圆2cos 与直线3cos 4sin a0相切,求实数a的值解将极坐标方程化为直角坐标方程,得圆的方程为x2y22x,即(x1)2y21,直线的方程为3x4ya0.由题设知,圆心(1,0)到直线的距离为1,即有1,解得a8或a2,故a的值为8或2.4在平面直角坐标系xOy中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的参数方程为(t为参数),曲线C的极坐标方程为2cos .(1)求直线l和曲线C的直角坐标方程;(2)求曲线C上的点到直线l的距离的最值解(1)化为直角坐标方程
3、得,直线l:xy20,曲线C:(x1)2y21.(2)由(1)可知,曲线C是圆心为 C(1,0),半径r1的圆且圆心C(1,0)到直线l的距离dr1,故直线l与曲线C相交所以曲线C上的点到直线l的距离的最大值为dr,最小值为0.5(2015全国卷)在直角坐标系xOy中,曲线C1:(t为参数,t0),其中0,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:2sin ,曲线C3:2cos .(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值解(1)曲线C2的直角坐标方程为x2y22y0,曲线C3的直角坐标方程为x2y22x0.联立解得或所
4、以C2与C3交点的直角坐标为(0,0)和.(2)曲线C1的极坐标方程为(R,0),其中0.因此A的极坐标为(2sin ,),B的极坐标为(2cos ,)所以|AB|2sin 2cos |4.当时,|AB|取得最大值,最大值为4.6(2015湖南卷)已知直线l:(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为2cos .(1)将曲线C的极坐标方程化为直角坐标方程;(2)设点M的直角坐标为(5,),直线l与曲线C的交点为A,B,求|MA|MB|的值解(1)2cos 等价于22cos .将2x2y2,cos x代入即得曲线C的直角坐标方程为x2y22x0.(2)将(t为参数)代入式,得t25t180.设这个方程的两个实根分别为t1,t2,则由参数t的几何意义即知,|MA|MB|t1t2|18.