ImageVerifierCode 换一换
格式:DOC , 页数:11 ,大小:401.50KB ,
资源ID:269775      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-269775-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2022版新高考数学人教A版一轮复习学案:第1章 第5节 基本不等式 WORD版含解析.doc)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

2022版新高考数学人教A版一轮复习学案:第1章 第5节 基本不等式 WORD版含解析.doc

1、第五节基本不等式一、教材概念结论性质重现1基本不等式:(1)基本不等式成立的条件:a0,b0.(2)等号成立的条件:当且仅当ab时取等号(3)其中,称为正数a,b的算术平均数,称为正数a,b的几何平均数2两个重要的不等式(1)a2b22ab(a,bR),当且仅当ab时取等号(2)ab (a,bR),当且仅当ab时取等号3利用基本不等式求最值已知x0,y0,(1)如果积xy等于定值P,那么当xy时,和xy有最小值2(简记:积定和最小)(2)如果和xy等于定值S,那么当xy时,积xy有最大值(简记:和定积最大)(1)2(ab0),当且仅当ab时取等号(2)(a,bR)(3).(4)连续使用基本不等

2、式求最值要求每次等号成立的条件一致二、基本技能思想活动体验1判断下列说法的正误,对的打“”,错的打“”(1)不等式a2b22ab与成立的条件是相同的()(2)函数yx的最小值是2()(3)函数f (x)sin x的最小值为4()(4)“x0且y0”是“2”的充要条件()2若x0,y0,且 xy18,则的最大值为()A9 B18 C36 D81A解析:因为xy18,所以9,当且仅当xy9时,等号成立3已知0x1,则x(33x)取得最大值时x的值为()A B C DB解析:因为0x1)的最小值为_22解析:因为x1,所以x10.y(x1)222.当且仅当x1,即x1时,取等号所以函数y(x1)的最

3、小值为22.(2)若函数f (x)x(x2)在xa处取最小值,则a_.3解析:因为x2,所以x20,所以f (x)x(x2)2224.当且仅当x2,即(x2)21时等号成立,解得x1或3. 又因为x2,所以x3,即a3时,函数f (x)在x3处取得最小值拼凑法求最值的实质及关键点拼凑法就是将相关代数式进行适当的变形,通过添项、拆项等方法凑成和为定值或积为定值的形式,然后利用基本不等式求解最值的方法拼凑法的实质是代数式的灵活变形,拼系数、凑常数是关键考向2常值代换求最值已知a0,b0,ab1,则的最小值为_4解析:因为ab1,所以(ab)222224.当且仅当ab时,取等号1将条件“ab1”改为

4、“a2b3”,则的最小值为_1解析:因为a2b3,所以ab1.所以121.当且仅当ab时,取等号2本例条件不变,则的最小值为_9解析:52549.当且仅当ab时,取等号考向3消元法求最值若正数x,y满足x26xy10,则x2y的最小值是()A B C DA解析:因为正数x,y满足x26xy10,所以y.由即解得0x0,y0,求证:.证明:因为x0,y0,2xy1,所以(2xy)4448,当且仅当,即2xy时取等号又,当且仅当2xy时取等号,所以,当且仅当2xy时取等号两次利用基本不等式求最值的注意点当连续多次使用基本不等式时,一定要注意每次是否能保证等号成立,并且注意取等号的条件的一致性1设0

5、x0,y0,x2y5,则的最小值为_4解析:因为 x0,y0,所以 0.因为 x2y5,所以 224. 当且仅当2,即x3,y1时取等号所以 的最小值为4.3已知x0,y0,且1,则xyxy的最小值为_74解析:因为1,所以xyy2x,xyxy3x2y(3x2y)774,当且仅当yx,即x1,y2时取等号所以xyxy的最小值为74.4(2020 天津卷)已知a0,b0,且ab1,则的最小值为_4解析:因为a0,b0,且ab1,所以24.当且仅当且ab1,即或时,等号成立故的最小值为4.考点2利用基本不等式解决实际问题应用性某厂家拟在2021年“双十一”举行大型的促销活动,经测算某产品当促销费用

6、为x万元时,销售量t万件满足t5(其中0xk,k为正常数)现假定产量与销售量相等,已知生产该产品t万件还需投入成本(102t)万元(不含促销费用),产品的销售价格定为元/件(1)将该产品的利润y万元表示为促销费用x万元的函数;(2)促销费用投入多少万元时,厂家的利润最大?解:(1)由题意知,该产品售价为2元/件,所以y2t102tx,代入t5化简,得y20(0xk)(2)y202121217,当且仅当x1,即x1时,上式取等号当k1时,促销费用投入1万元时,厂家的利润最大;当0k0,故y21在0xk上单调递增所以,在xk时,函数有最大值,即促销费用投入k万元时,厂家的利润最大综上,当k1时,促

7、销费用投入1万元时,厂家的利润最大;当0k1时,促销费用投入k万元时,厂家的利润最大基本不等式的实际应用问题的解题技巧(1)根据实际问题抽象出函数的解析式,再利用基本不等式求得函数的最值(2)解应用题时,一定要注意变量的实际意义及其取值范围(3)在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900 m2的矩形温室在温室内划出三块全等的矩形区域,分别种植三种植物相邻矩形区域之间间隔1 m,三块矩形区域的前、后与内墙各保留1 m宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留3 m宽的通道,如图设矩形

8、温室的室内长为x(单位:m),三块种植植物的矩形区域的总面积为S(单位:m2)(1)求S关于x的函数关系式;(2)求S的最大值解:(1)由题设,得S(x8)2x916,x(8,450)(2)因为8xb0,则a2的最小值是_四字程序读想算思a2最小值求最小值的方法?构造定积转化与化归ab01.构造定积;2.三角换元.1.定和求积定积求和;2.变形:b(ab)a,构造定积;3.三角代换构造定积1.定和求积积最大,定积求和和最小;2.三角代换条件思路参考:消b,转化为含a的式子求最值4解析:由于a2中有两个变量,并注意到b(ab)a,则b(ab). 这样就消去变量b,因此a2a24. 当且仅当bab

9、,a2时等号成立,即a,b时等号成立. 故a2的最小值是4.思路参考:用b和ab表达a后求最值4解析:注意到b(ab)a,则b(ab)2a2,则a2b(ab)24b(ab)4.当且仅当4b2(ab)21,即a,b时等号成立. 故a2的最小值是4.思路参考:利用三角换元求最值4解析:由b(ab)a,联想到三角换元,令abacos2, basin2,于是a2a2a2a24,当且仅当a2,sin221,即a,b时等号成立. 故a2的最小值是4.1利用基本不等式,通过恒等变形及配凑,使“和”或“积”为定值,是求解最值问题的常用方法. 其中常见的变形手段有拆项、并项、配式及配系数等2基于新课程标准,求最

10、值问题一般要熟练掌握对代数式的变形能力、推理能力和表达能力,体现了逻辑推理、数学运算的核心素养已知x0,y0,且1,则xy的最小值为_16解析:(方法一:1的代换)因为1,所以xy(xy)10.因为x0,y0,所以26.当且仅当,即y3x时,取等号又1,所以x4,y12,所以xy16.所以当x4,y12时,xy取最小值16.(方法二:消元法)由1,得x.因为x0,y0,所以y9.xyyyy1(y9)10.因为y9,所以y90,所以y926.当且仅当y9,即y12时取等号,此时,x4,所以当x4,y12时,xy取最小值16.(方法三:配凑法)由1,得y9xxy,所以(x1)(y9)9.所以xy10(x1)(y9)10216.当且仅当x1y9时取等号又因为1,所以x4,y12.所以当x4,y12时,xy取最小值16.

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1