ImageVerifierCode 换一换
格式:DOCX , 页数:8 ,大小:32.83KB ,
资源ID:269052      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-269052-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2023新教材高考数学二轮专题复习 强化训练20 圆锥曲线——大题备考.docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

2023新教材高考数学二轮专题复习 强化训练20 圆锥曲线——大题备考.docx

1、强化训练20圆锥曲线大题备考第一次作业12021全国乙卷已知抛物线C:y22px(p0)的焦点F到准线的距离为2.(1)求C的方程;(2)已知O为坐标原点,点P在C上,点Q满足9,求直线OQ斜率的最大值22021新高考卷已知椭圆C的方程为1(ab0),右焦点为F(,0),且离心率为.(1)求椭圆C的方程;(2)设M,N是椭圆C上的两点,直线MN与曲线x2y2b2(x0)相切证明:M,N,F三点共线的充要条件是|MN|.3.2021新高考卷在平面直角坐标系xOy中,已知点F1(,0),F2(,0),点M满足|MF1|MF2|2.记M 的轨迹为C.(1)求C的方程;(2)设点T在直线x上,过T的两

2、条直线分别交C于A,B两点和P,Q两点,且|TA|TB|TP|TQ|,求直线AB的斜率与直线PQ的斜率之和42022新高考卷已知点A(2,1)在双曲线C:1(a1)上,直线l交C于P,Q两点,直线AP,AQ的斜率之和为0.(1)求l的斜率;(2)若tan PAQ2,求PAQ的面积强化训练20圆锥曲线1解析:(1)由抛物线的定义可知,焦点F到准线的距离为p,故p2,所以C的方程为y24x.(2)由(1)知F(1,0),设P(x1,y1),Q(x2,y2),则(x2x1,y2y1),(1x2,y2),因为9 ,所以,可得,又点P在抛物线C上,所以y4x1,即(10y2)24(10x29),化简得y

3、x2,则点Q的轨迹方程为y2x.设直线OQ的方程为ykx,易知当直线OQ与曲线y2x相切时,斜率可以取最大,联立ykx与y2x并化简,得k2x2x0,令()24k20,解得k,所以直线OQ斜率的最大值为.2解析:(1)由题意,椭圆半焦距c且e,所以a,又b2a2c21,所以椭圆方程为y21;(2)由(1)得,曲线为x2y21(x0),当直线MN的斜率不存在时,直线MN:x1,不合题意;当直线MN的斜率存在时,设M(x1,y1),N(x2,y2),必要性:若M,N,F三点共线,可设直线MN:yk(x)即kxyk0,由直线MN与曲线x2y21(x0)相切可得1,解得k1,联立可得4x26x30,所

4、以x1x2,x1x2,所以|MN|,所以必要性成立;充分性:设直线MN:ykxb,(kb0)相切可得1,所以b2k21,联立可得(13k2)x26kbx3b230,所以x1x2,x1x2,所以|MN|,化简得3(k21)20,所以k1,所以或,所以直线MN:yx或yx,所以直线MN过点F(,0),M,N,F三点共线,充分性成立;所以M,N,F三点共线的充要条件是|MN|.3解析:(1)因为2且x2.由韦达定理可得x1x2,x1x2, 所以,设直线PQ的斜率为k2,同理可得,因为,即,整理可得kk,即0,显然k1k20,故k1k20.因此,直线AB与直线PQ的斜率之和为0.4解析:(1)点A(2

5、,1)在双曲线C:1(a1)上,1,解得a22.双曲线C的方程为y21.显然直线l的斜率存在,可设其方程为ykxm.联立得方程组消去y并整理,得(12k2)x24kmx2m220.16k2m24(12k2)(2m22)8m2816k20.设P(x1,y1),Q(x2,y2),则x1x2,x1x2.由kAPkAQ0,得0,即(x22)(kx1m1)(x12)(kx2m1)0.整理,得2kx1x2(m12k)(x1x2)4(m1)0,即2k(m12k)4(m1)0,即(k1)(m2k1)0.直线l不过点A,k1.(2)设PAQ2,00,P,Q只能同在双曲线左支或同在右支当P,Q同在左支时,tan 即为直线AP或AQ的斜率设kAP.为双曲线一条渐近线的斜率,直线AP与双曲线只有一个交点,不成立当P,Q同在右支时,tan ()即为直线AP或AQ的斜率设kAP,则kAQ,直线AP的方程为y1(x2),即yx21.联立得方程组消去y并整理,得3x2(164)x2080,则xP2,解得xP.|xAxP|2|.同理可得|xAxQ|.tan 22,02,sin 2,SPAQ|AP|AQ|sin 2|xAxP|xAxQ|sin 23.8

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1