1、课时规范练60随机事件的概率基础巩固组1.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是310,那么概率为710的事件是()A.至多有一张移动卡B.恰有一张移动卡C.都不是移动卡D.至少有一张移动卡2.(2021安徽芜湖期末)抛掷一枚质地均匀的骰子,记事件A为“向上的点数为1或4”,事件B为“向上的点数为奇数”,则下列说法正确的是()A.A与B互斥B.A与B对立C.P(A+B)=23D.P(A+B)=133.抽查10件产品,设事件A为“至少有2件次品”,则事件A的对立事件为()A.至多有2件次品B.至多有1件次品C.至多有2件正品D.至少有2件正品4.
2、如果事件A与B是互斥事件,且事件AB发生的概率是0.64,事件B发生的概率是事件A发生的概率的3倍,则事件A发生的概率为()A.0.64B.0.36C.0.16D.0.845.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为17,都是白子的概率为1235.则从中任意取出2粒恰好是同一颜色的概率为()A.17B.1235C.1735D.16.若随机事件A,B互斥,A,B发生的概率均不等于0,且P(A)=2-a,P(B)=4a-5,则实数a的取值范围是.7.已知随机事件A,B发生的概率满足条件P(AB)=34,某人猜测事件AB发生,则此人猜测正确的概率为.8.根据以往统计资料,某地车主
3、购买甲种保险的概率是0.5,购买乙种保险但不购买甲种保险的概率是0.3,设各车主购买保险相互独立.(1)求该地1位车主至少购买甲、乙两种保险中一种的概率;(2)求该地1位车主甲、乙两种保险都不购买的概率.9.从A地到火车站共有两条路径L1和L2,现随机抽取100位从A地到火车站的人进行调查,调查结果如下.所用时间/分钟10202030304040505060选择L1的人数612181212选择L2的人数0416164(1)试估计40分钟内不能赶到火车站的概率;(2)分别求通过路径L1和L2所用时间落在上表中各时间段内的频率;(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽最
4、大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径.综合提升组10.(2021浙江高三专题练习)下列命题中是真命题的是()A.事件A发生的概率P(A)等于事件A发生的频率fn(A)B.一枚质地均匀的骰子掷一次得到3点的概率是16,说明这个骰子掷6次一定会出现一次3点C.掷两枚质地均匀的硬币,事件A为“一枚正面朝上,一枚反面朝上”,事件B为“两枚都是正面朝上”,则P(A)=2P(B)D.对于两个事件A,B,若P(AB)=P(A)+P(B),则事件A与事件B互斥11.在一次班级聚会上,某班到会的女同学比男同学多6人,从这些同学中随机挑选一人表演节目.若选到女同学的概率为23,
5、则这班参加聚会的同学的人数为.12.假设甲、乙两种品牌的同类产品在某地区市场上销售量相等,为了解它们的使用寿命(单位:小时),现从这两种品牌的产品中分别随机抽取100个进行测试,结果统计如图:甲品牌乙品牌(1)估计甲品牌产品寿命小于200小时的概率;(2)这两种品牌产品中,某个产品已使用了200小时,试估计该产品是甲品牌的概率.创新应用组13.把一枚骰子投掷两次,观察出现的点数,并记第一次出现的点数为a,第二次出现的点数为b,向量m=(a,b),n=(1,2),则向量m与向量n不共线的概率是()A.16B.1112C.112D.11814.下面是某市2月1日至14日的空气质量指数趋势图及空气质
6、量指数与污染程度对应表.某人随机选择2月1日至2月13日中的某一天到该市出差,第二天返回(往返共两天).空气质量指数污染程度小于100优良大于100且小于150轻度大于150且小于200中度大于200且小于300重度大于300且小于500严重大于500爆表(1)由图判断从哪天开始连续三天的空气质量指数方差最大?(只写出结论,不要求证明)(2)求此人到达该市当日空气质量优良的概率;(3)求此人出差期间(两天)空气质量至少有一天为中度或重度污染的概率.答案:课时规范练1.A2.C解析:事件A与B不互斥,当向上点数为1时,两者同时发生,故事件A与B也不对立.事件A+B表示向上点数为1,3,4,5之一
7、,所以P(A+B)=46=23.故选C.3.B4.C解析:设P(A)=x,则P(B)=3x,因为事件A与B是互斥事件,所以P(AB)=P(A)+P(B)=x+3x=0.64,解得x=0.16.故选C.5.C解析:设“从中取出2粒都是黑子”为事件A,“从中取出2粒都是白子”为事件B,“任意取出2粒恰好是同一色”为事件C,则C=AB,且事件A与B互斥.所以P(C)=P(A)+P(B)=17+1235=1735,即任意取出2粒恰好是同一颜色的概率为1735.故选C.6.54,43解析:由题意可知0P(A)1,0P(B)1,P(A)+P(B)1,则02-a1,04a-51,3a-31,解得1a2,54
8、a32,a43,故54P(A2),故甲应选择L1;P(B1)=0.1+0.2+0.3+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9,P(B2)P(B1),故乙应选择L2.10.C解析:频率与试验次数有关,总在概率附近摆动,故选项A错误;概率是指这件事发生的可能性,故选项B错误;P(A)=24=12,P(B)=1212=14,所以P(A)=2P(B),故选项C正确;在几何概型中选项D中的结论不成立.故选C.11.18解析:设该班到会的女同学有x人,则该班到会的共有(2x-6)人,所以x2x-6=23,解得x=12,故该班参加聚会的同学有18人.12.解: (1)甲品牌产品寿命小于2
9、00小时的频率为5+20100=14,用频率估计概率,可得甲品牌产品寿命小于200小时的概率为14.(2)根据频数分布图可得寿命不低于200小时的两种品牌产品共有75+70=145(个),其中甲品牌产品有75个,所以在样本中,寿命不低于200小时的产品是甲品牌的频率是75145=1529.据此估计已使用了200小时的该产品是甲品牌的概率为1529.13.B解析:若m与n共线,则2a-b=0,而(a,b)的可能情况有66=36(种).符合2a=b的有(1,2),(2,4),(3,6),共3种.故共线的概率是336=112,从而不共线的概率是1-112=1112.14.解: (1)从2月5日开始连
10、续三天的空气质量指数方差最大.(2)设Ai表示事件“此人于2月i日到达该市”(i=1,2,13).根据题意,P(Ai)=113,且AiAj=(ij,j=1,2,13).设B为事件“此人到达当日空气优良”,则B=A1A2A3A7A12A13.所以P(B)=P(A1A2A3A7A12A13)=613.(3)设“此人出差期间空气质量至少有一天为中度或重度污染”为事件A,即“此人出差期间空气质量指数至少有一天大于150,且小于300”,由题意可知P(A)=P(A4A5A6A7A8A9A10A11)=P(A4)+P(A5)+P(A6)+P(A7)+P(A8)+P(A9)+P(A10)+P(A11)=813.6