ImageVerifierCode 换一换
格式:DOCX , 页数:9 ,大小:25.88KB ,
资源ID:266920      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-266920-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2023年高考数学 微专题练习 专练55 高考大题专练(五)圆锥曲线的综合运用(含解析)理.docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

2023年高考数学 微专题练习 专练55 高考大题专练(五)圆锥曲线的综合运用(含解析)理.docx

1、专练55高考大题专练(五)圆锥曲线的综合运用12021全国乙卷已知抛物线C:x22py(p0)的焦点为F,且F与圆M:x2(y4)21上点的距离的最小值为4.(1)求p;(2)若点P在M上,PA,PB是C的两条切线,A,B是切点,求PAB的最大值22022全国甲卷(理),20设抛物线C:y22px(p0)的焦点为F,点D(p,0),过F的直线交C于M,N两点当直线MD垂直于x轴时,|MF|3.(1)求C的方程;(2)设直线MD,ND与C的另一个交点分别为A,B,记直线MN,AB的倾斜角分别为,.当取得最大值时,求直线AB的方程32022全国乙卷(理),20已知椭圆E的中心为坐标原点,对称轴为x

2、轴、y轴,且过A(0,2),B(,1)两点(1)求E的方程;(2)设过点P(1,2)的直线交E于M,N两点,过M且平行于x轴的直线与线段AB交于点T,点H满足.证明:直线HN过定点42022江西省高三联考已知曲线C上任意一点到点F(2,0)的距离比它到y轴的距离大2,过点F(2,0)的直线l与曲线C交于A,B两点(1)求曲线C的方程;(2)若曲线C在A,B处的切线交于点M,求MAB面积的最小值52022江西省宜春模拟已知点T是圆A:(x1)2y280上的动点,点B(1,0),线段BT的垂直平分线交线段AT于点S,记点S的轨迹为曲线C.(1)求曲线C的方程;(2)过B(1,0)作曲线C的两条弦D

3、E,MN,这两条弦的中点分别为P,Q,若0,求BPQ面积的最大值专练55高考大题专练(五)圆锥曲线的综合运用1解析:(1)由题意知M(0,4),F,圆M的半径r1,所以|MF|r4,即414,解得p2.(技巧点拨:F与圆M上点的距离的最小值为|MF|r,最大值为|MF|r)(2)由(1)知,抛物线方程为x24y,由题意可知直线AB的斜率存在,设A,B,直线AB的方程为ykxb,联立得,消去y得x24kx4b0,则16k216b0 (),x1x24k,x1x24b,所以|AB|x1x2|4.因为x24y,即y,所以y,则抛物线在点A处的切线斜率为,在点A处的切线方程为y(xx1),即yx,(技巧

4、点拔:因为抛物线方程为x24y,即y,所以想到利用导数的几何意义求切线方程)同理得抛物线在点B处的切线方程为yx,联立得,则,即P(2k,b).因为点P在圆M上,所以4k2(4b)21,且12k1,5b3,即k,3b5,满足().(易错警示:由点P在圆M上,只得到了4k2(4b)21,而忽视k,b的取值范围,导致得到错误答案)设点P到直线AB的距离为d,则d,所以SPAB|AB|d4.由得,k2,令tk2b,则t,且3b5.因为t在3,5上单调递增,所以当b5时,t取得最大值,tmax5,此时k0,所以PAB面积的最大值为20.2解析:(1)(方法一)由题意可知,当xp时,y22p2.设M点位

5、于第一象限,则点M的纵坐标为p,|MD|p,|FD|.在RtMFD中,|FD|2|MD|2|FM|2,即(p)29,解得p2.所以C的方程为y24x.(方法二)抛物线的准线方程为x.当MD与x轴垂直时,点M的横坐标为p.此时|MF|p3,所以p2.所以抛物线C的方程为y24x.(2)设直线MN的斜率为k1,直线AB的斜率为k2,则k1tan,k2tan.由题意可得k10,k20.设M(x1,y1),N(x2,y2),y10,y20,A(x3,y3),B(x4,y4),y30,y40.设直线AB的方程为yk2(xm),m为直线AB与x轴交点的横坐标,直线MN的方程为yk1(x1),直线MD的方程

6、为yk3(x2),直线ND的方程为yk4(x2).联立得方程组所以kx2(2k4)xk0,则x1x21.联立得方程组所以kx2(2mk4)xkm20,则x3x4m2.联立得方程组所以kx2(4k4)x4k0,则x1x34.联立得方程组所以kx2(4k4)x4k0,则x2x44.所以M(x1,2),N(,),A(,),B(4x1,4).所以k1,k2,k12k2,所以tan ().因为k12k2,所以k1与k2同号,所以与同为锐角或钝角当取最大值时,tan ()取得最大值所以k20,且当2k2,即k2时,取得最大值易得x3x4m2,又易知m0,所以m4.所以直线AB的方程为xy40.3解析:(1

7、)设椭圆E的方程为mx2ny21(m0,n0,mn).将点A(0,2),B(,1)的坐标代入,得解得所以椭圆E的方程为1.(2)证明:(方法一)设M(x1,y1),N(x2,y2).由题意,知直线MN与y轴不垂直,设其方程为x1t(y2).联立得方程组消去x并整理,得(4t23)y2(16t28t)y16t216t80,所以y1y2,y1y2.设T(x0,y1).由A,B,T三点共线,得,得x0y13.设H(x,y).由,得(y13x1,0)(xy13,yy1),所以x3y16x1,yy1,所以直线HN的斜率k,所以直线HN的方程为yy2(xx2).令x0,得y(x2)y2y22.所以直线NH

8、过定点(0,2).(方法二)由A(0,2),B(,1)可得直线AB的方程为yx2.a若过点P(1,2)的直线的斜率不存在,则其直线方程为x1.将直线方程x1代入1,可得N(1,),M(1,).将y代入yx2,可得T(3,).由,得H(52,).此时直线HN的方程为y(2)(x1),则直线HN过定点(0,2).b若过点P(1,2)的直线的斜率存在,设此直线方程为kxy(k2)0,M(x1,y1),N(x2,y2).联立得方程组消去y并整理,得(3k24)x26k(2k)x3k(k4)0.所以则且x1y2x2y1.联立得方程组,可得T(3,y1).由,得H(3y16x1,y1).则直线HN的方程为

9、yy2(xx2).将点(0,2)的坐标代入并整理,得2(x1x2)6(y1y2)x1y2x2y13y1y2120.将代入,得24k12k29648k24k4848k24k236k2480,显然成立综上可得,直线HN过定点(0,2).4解析:(1)设曲线C上任意一点P的坐标为(x,y),则有:|x|2,当x0时,有y28x;当x0时,有y0,所以曲线的方程为y28x(x0)或y0(x0).(2)由题意设l的方程为xmy2,A(x1,y1),B(x2,y2),由y28my160,0mR,y1y28m,y1y216,|AB|8(1m2),设切线MA的方程为yy1k(xx1)(k0),由y2y8x10

10、,0ky14,切线MA的方程为yy1(xx1),化简得yy14(xx1)4x,同理可得切线MB的方程为yy24(xx2)4x,由得点M的坐标为M(2,4m),点M到直线l的距离d4,SMAB|AB|d16(1m2)16,当且仅当m0时等号成立,故MAB面积的最小值为16.5解析:(1)圆A:(x1)2y28的圆心A(1,0),半径r2,依题意,|SB|ST|,|SB|SA|ST|SA|AT|22|AB|,即点S的轨迹是以B,A为左右焦点,长轴长为2的椭圆,短半轴长b1,所以曲线C的方程为y21.(2)由0知,DEMN,直线DE,MN不垂直坐标轴,否则点P,Q之一与点B重合,不能构成三角形,即直线DE的斜率存在且不为0,设直线DE方程为yk(x1),由消去y并整理得(2k21)x24k2x2k220,设D(x1,y1),E(x2,y2),DE中点P(xP,yP),则有x1x2,xP,yP,因此,|BP|,直线MN的斜率为,同理可得|BQ|,BPQ面积SBPQ|BP|BQ|,令t|k|2,当且仅当|k|1时取“”,则SBPQ,函数y4t在2,)上单调递增,即当t2时,(4t)min9,所以当t2,即k1时,(SBPQ)max,所以BPQ面积的最大值是.

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1