1、课时跟踪检测(五十八) 高考基础题型得分练1把红、蓝、黑、白4张纸牌随机分给甲、乙、丙、丁4个人,每个人分得一张,事件“甲分得红牌”与事件“乙分得红牌”是()A对立事件B互斥但不对立事件C不可能事件D以上都不对答案:B解析:由于每人分得一张牌,故“甲分得红牌”意味着“乙分得红牌”是不可能的,故是互斥事件,但不是对立事件,故选B.2在一次随机试验中,彼此互斥的事件A,B,C,D的概率分别为0.2,0.2,0.3,0.3,则下列说法正确的是()AAB与C是互斥事件,也是对立事件BBC与D是互斥事件,也是对立事件CAC与BD是互斥事件,但不是对立事件DA与BCD是互斥事件,也是对立事件答案:D解析:
2、由于A,B,C,D彼此互斥,且ABCD是一个必然事件,故其事件的关系可由如图所示的韦恩图表示,由图可知,任何一个事件与其余3个事件的和事件必然是对立事件,任何两个事件的和事件与其余两个事件的和事件也是对立事件3口袋中有100个大小相同的红球、白球、黑球,其中红球45个,从口袋中摸出一个球,摸出白球的概率为0.23,则摸出黑球的概率为()A0.45B.0.67 C0.64D.0.32答案:D解析:摸出红球的概率为0.45,摸出白球的概率为0.23,故摸出黑球的概率P10.450.230.32.4围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为,都是白子的概率是.则从中任意取出2粒恰好
3、是同一色的概率是()A. B. C.D.1答案:C解析:设“从中取出2粒都是黑子”为事件A,“从中取出2粒都是白子”为事件B,“任意取出2粒恰好是同一色”为事件C,则CAB,且事件A与B互斥所以P(C)P(A)P(B),即任意取出2粒恰好是同一色的概率为.5甲、乙两人下棋,和棋的概率为,乙获胜的概率为,则下列说法正确的是()A甲获胜的概率是B甲不输的概率是C乙输的概率是D乙不输的概率是答案:A解析:“甲获胜”是“和棋或乙获胜”的对立事件,所以“甲获胜”的概率是P1,故A正确;“乙输”等于“甲获胜”,其概率为,故C不正确;设事件A为“甲不输”,则A是“甲胜”“和棋”这两个互斥事件的并事件,所以P
4、(A)或设事件A为“甲不输”看作是“乙获胜”的对立事件,所以P(A)1,故B不正确;同理,“乙不输”的概率为,故D不正确6有两张卡片,一张的正反面分别写着数字0与1,另一张的正反面分别写着数字2与3,将两张卡片排在一起组成两位数,则所组成的两位数为奇数的概率是()A. B. C. D.答案:C解析:将两张卡片排在一起组成两位数,则所组成的两位数有12,13,20,21,30,31,共6个,两位数为奇数的有13,21,31,共3个,故所组成的两位数为奇数的概率为,故选C.7对一批产品的长度(单位:毫米)进行抽样检测,下图为检测结果的频率分布直方图根据标准,产品长度在区间20,25)上的为一等品,
5、在区间15,20)和25,30)上的为二等品,在区间10,15)和30,35)上的为三等品用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为()A0.09B.0.20 C0.25D.0.45答案:D解析:设区间25,30)对应矩形的另一边长为x,则所有矩形面积之和为1,即(0.020.040.060.03x)51,解得x0.05.产品为二等品的概率为0.0450.0550.45.82017山西太原一模某袋中有编号为1,2,3,4,5,6的6个小球(小球除编号外完全相同),甲先从袋中摸出一个球,记下编号后放回,乙再从袋中摸出一个球,记下编号,则甲、乙两人所摸出球的编号不同的概率是(
6、 )A. B. C. D.答案:C解析:记(a,b)为甲、乙摸球的编号,由题意得,所有的基本事件共有36个,满足ab的基本事件共有30个,故所求事件概率为.9某城市2016年的空气质量状况如下表所示:污染指数T3060100110130140概率P其中污染指数T50时,空气质量为优;50T100时,空气质量为良;100T150时,空气质量为轻微污染,则该城市2015年空气质量达到良或优的概率为_答案:解析:由题意可知2016年空气质量达到良或优的概率为P.10现有10个数,它们能构成一个以1为首项,3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是_答案:解析:由题意得an
7、(3)n1,易知前10项中奇数项为正,偶数项为负,所以小于8的项为第一项和偶数项,共6项,即6个数,所以p.112017甘肃兰州诊断从2本不同的数学书和2本不同的语文书中任意抽出2本书(每本书被抽中的机会相等),则抽出的书是同一学科的概率_.答案:解析:从2本不同的数学书和2本不同的语文书中任意抽出2本书共有6种不同的取法,其中抽出的书是同一学科的取法共有2种,因此所求的概率等于.冲刺名校能力提升练12017河北大城一中月考某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽检一件是正品(甲级)的概率为()A0.95B.0.97C0.
8、92 D.0.08答案:C解析:记抽检的产品是甲级品为事件A,是乙级品为事件B,是丙级品为事件C,这三个事件彼此互斥,因而所求概率为P(A)1P(B)P(C)15%3%92%0.92.22017福建福州质检在2015年全国青运会火炬传递活动中,有编号为1,2,3,4,5的5名火炬手若从中任选2人,则选出的火炬手的编号相连的概率为( )A. B. C. D.答案:D解析:由题意得,从1,2,3,4,5任取两人,共有10种取法选出的火炬手的编号相连时,共有(1,2),(2,3),(3,4),(4,5),共4种取法,所以概率为P,故选D.32017安徽合肥一模某城市有连接8个小区A,B,C,D,E,
9、F,G,H和市中心O的整齐方格形道路网,每个小方格均为正方形,如图所示某人从道路网中随机地选择一条最短路径,由小区A前往小区H,则他经过市中心O的概率为()A. B. C. D.答案:B解析:由题意知,此人从小区A前往小区H的所有最短路径为:ABCEH,ABOEH,ABOGH,ADOEH,ADOGH,ADFGH,共6条记“此人经过市中心O”为事件M,则M包含的基本事件为:ABOEH,ABOGH,ADOEH,ADOGH,共4个,所以P(M),即他经过市中心O的概率为.4从一箱产品中随机地抽取一件,设事件A抽到一等品,事件B抽到二等品,事件C抽到三等品,且已知P(A)0.65,P(B)0.2,P(
10、C)0.1,则事件“抽到的不是一等品”的概率为_答案:0.35解析:“抽到的不是一等品”与事件A是对立事件,所求概率为1P(A)10.650.35.5黄种人人群中各种血型的人数所占的比例见下表:血型ABABO该血型的人数所占的比例28%29%8%35%已知同种血型的人可以互相输血,O型血的人可以给任一种血型的人输血,任何人的血都可以输给AB型血的人,其他不同血型的人不能互相输血小明是B型血,若他因病需要输血,问:(1)任找一个人,其血可以输给小明的概率是多少?(2)任找一个人,其血不能输给小明的概率是多少?解:(1)任找一人,其血型为A,B,AB,O型血分别记为事件A,B,C,D,它们是互斥的由已知,有P(A)0.28,P(B)0.29,P(C)0.08,P(D)0.35.因为B,O型血可以输给B型血的人,故“任找一个人,其血可以输给小明”为事件BD,根据概率加法公式,得P(BD)P(B)P(D)0.290.350.64.(2)由于A,AB型血不能输给B型血的人,故“任找一个人,其血不能输给小明”为事件AC,且P(AC)P(A)P(C)0.280.080.36.