1、第八章第五节一、选择题1(文)(2014广东文)若实数k满足0k5,则曲线1与曲线1的()A实半轴长相等 B虚半轴长相等C离心率相等D焦距相等答案D解析0k5,两方程都表示双曲线,由双曲线中c2a2b2得其焦距相等,选D(理)(2014广东理)若实数k满足0k9,则曲线1与曲线1的()A焦距相等 B实半轴长相等C虚半轴长相等D离心率相等答案A解析由0k0)的右焦点,O为坐标原点,设P是双曲线C上一点,则POF的大小不可能是()A15B25C60D165答案C解析双曲线的渐近线方程为0,两渐近线的斜率k,渐近线的倾斜角分别为30,150,所以POF的大小不可能是60.(理)已知双曲线1(a0,b
2、0)的渐近线方程为yx,若顶点到渐近线的距离为1,则双曲线的方程为()A1B1C1D1答案A解析由渐近线方程为yx知,ab,又顶点到渐近线距离为1,1,由得,a2,b,选A3(文)(2013保定调研)已知双曲线1(a0,b0)的一条渐近线方程是yx,它的一个焦点在抛物线y248x的准线上则双曲线的方程为()A1B1C1D1答案B解析由题意可知解得所以选B(理)(2014甘肃兰州、张掖诊断)已知双曲线1(a0,b0)的左、右焦点分别为F1,F2,以|F1F2|为直径的圆与双曲线渐近线的一个交点为(3,4),则此双曲线的方程为()A1B1C1D1答案C解析因为以|F1F2|为直径的圆与双曲线渐近线
3、的一个交点为(3,4),所以c5,又c2a2b2,所以a3,b4,所以以此双曲线的方程为1.4(2014山东烟台一模)双曲线C1的中心在原点,焦点在x轴上,若C1的一个焦点与抛物线C2:y212x的焦点重合,且抛物线C2的准线交双曲线C1所得的弦长为4,则双曲线C1的实轴长为()A6B2CD2答案D解析设双曲线C1的方程为1(a0,b0)由已知,抛物线C2的焦点为(3,0),准线方程为x3,即双曲线中c3,a2b29,又抛物线C2的准线过双曲线的焦点,且交双曲线C1所得的弦长为4,所以2,与a2b29联立,得a22a90,解得a,故双曲线C1的实轴长为2,故选D5(2013广东六校联考)在平面
4、直角坐标系xOy中,已知ABC的顶点A(5,0)和C(5,0),若顶点B在双曲线1上,则为()ABCD答案C解析设ABC中角A、B、C所对的边分别是a、b、c,由正弦定理得,由双曲线的标准方程和定义可知,A、C是双曲线的焦点,且|AC|10,|BC|AB|8.所以,故选C6(文)(2014江西赣州四校联考)已知双曲线1(a0,b0)的左焦点为F1,左、右顶点分别为A1,A2,P为双曲线上任意一点,则分别以线段PF1,A1A2为直径的两个圆的位置关系为()A相交B相切C相离D以上情况都有可能答案B解析设以线段PF1,A1A2为直径的两圆的半径分别为r1,r2,若P在双曲线左支上,如图所示,则|O
5、2O|PF2|(|PF1|2a)|PF1|ar1r2,即圆心距为两圆半径之和,两圆外切若P在双曲线右支上,同理求得|OO1|r1r2,故此时两圆内切综上,两圆相切,故选B(理)如图在正方体ABCDA1B1C1D1中,当动点M在底面ABCD内运动时,总有:D1AD1M,则动点M在面ABCD内的轨迹是()上的一段弧()A圆B椭圆C双曲线D抛物线答案A解析因为满足条件的动点在底面ABCD内运动时,动点的轨迹是以D1D为轴线,以D1A为母线的圆锥,与平面ABCD的交线即圆的一部分故选A二、填空题7(文)已知中心在原点,焦点在x轴上的双曲线的一条渐近线为mxy0,若m为集合1,2,3,4,5,6,7,8
6、,9中任意一个值,则使得双曲线的离心率大于3的概率是_答案解析由题意知双曲线方程可设为m2x2y21,从而e3,m0,m2,故所求概率是,故填.(理)(2014浙江)设直线x3ym0(m0)与双曲线1(a0,b0)的两条渐近线分别交于点A,B,若点P(m,0)满足|PA|PB|,则该双曲线的离心率是_答案解析联立渐近线与直线方程可解得A(,),B(,),则kAB,设AB的中点为E,由|PA|PB|,可知AB的中点E与点P两点连线的斜率为3,6,化简得4b2a2,所以e.8(2014温州十校联考)过双曲线1(a0,b0)的左焦点F作圆x2y2a2的两条切线,记切点分别为A、B,双曲线的左顶点为C
7、,若ACB120,则双曲线的离心率e_.答案2解析连接OA,根据题意以及双曲线的几何性质,|FO|c,|OA|a,而ACB120,AOC60,又FA是圆O的切线,故OAFA,在RtFAO中,容易得到|OF|2a,e2.9(文)(2013北京大兴模拟)已知双曲线1(a0,b0)的左顶点与抛物线y22px(p0)的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(2,1),则双曲线的焦距为_答案2解析由解得由题意得得又已知a4,故a2,b1,c.所以双曲线的焦距2c2.(理)(2014深圳调研)已知双曲线C:1(a0,b0)与椭圆1有相同的焦点,且双曲线C的渐近线方程为y2x,则双曲
8、线C的方程为_答案x21解析易得椭圆的焦点为(,0),(,0),a21,b24,双曲线C的方程为x21.三、解答题10(文)已知双曲线的中心在原点,焦点F1、F2在坐标轴上,离心率为,且过点(4,)(1)求双曲线的方程;(2)若点M(3,m)在双曲线上,求证:0;(3)在(2)的条件下,求F1MF2的面积解析(1)e,可设双曲线方程为x2y2(0),双曲线过点(4,),1610,即6,双曲线方程为1.(2)证明:法1:由(1)可知,双曲线中ab,c2,F1(2,0),F2(2,0),kMF1,kMF2,kMF1kMF2,点M(3,m)在双曲线上,m23,kMF1kMF21,MF1MF2,即0.
9、法2:(23,m),(23,m),(23)(23)m23m2,点M在双曲线上,9m26,即m230,0.(3)F1MF2的底边长|F1F2|4,F1MF2的高h|m|,SF1MF26.(理)(2013铜陵一模)若双曲线E:y21(a0)的离心率等于,直线ykx1与双曲线E的右支交于A,B两点(1)求k的取值范围;(2)若|AB|6,点C是双曲线上一点,且m(),求k,m的值解析(1)由得故双曲线E的方程为x2y21.设A(x1,y1),B(x2,y2),由得(1k2)x22kx20.直线与双曲线右支交于A,B两点,故即所以1k.(2)由得x1x2,x1x2,|AB|26,整理得28k455k2
10、250,k2或k2.又1k0,a0)与抛物线yx2有一个公共焦点F,双曲线的过点F且垂直于y轴的弦长为,则双曲线的离心率等于()A2BCD答案B解析双曲线与抛物线x28y的公共焦点F的坐标为(0,2),由题意知(,2)在双曲线上,于是,得a23,b21,故e,故选B(理)(2013安徽皖南八校联考)设F1,F2分别是双曲线1(a0,b0)的左、右焦点,若双曲线的右支上存在一点P,使0,且F1PF2的三边长构成等差数列,则此双曲线的离心率为()ABC2D5答案D解析设|PF1|m,|PF2|n,且mn,|F1F2|2c,由题可知F1PF2为直角三角形且F1F2为斜边由双曲线的几何性质和直角三角形
11、的勾股定理得由得代入得(2c2a)2(2c4a)24c2,整理得c26ac5a20,等式两边同时除以a2得e26e50,解得e5或e1.因为双曲线的离心率e1,所以e5.12(2014重庆理)设F1,F2分别为双曲线1(a0,b0)的左、右焦点,双曲线上存在一点P使得|PF1|PF2|3b,|PF1|PF2|ab,则该双曲线的离心率为()ABCD3答案B解析由双曲线的定义得|PF1|PF2|2a,又|PF1|PF2|3b,所以(|PF1|PF2|)2(|PF1|PF2|)29b24a2,即4|PF1|PF2|9b24a2,又4|PF1|PF2|9ab,因此9b24a29ab,即9()240,则
12、(1)(4)0,解得(舍去),则双曲线的离心率e.13(2014湖北文)设a,b是关于t的方程t2costsin0的两个不等实根,则过A(a,a2),B(b,b2)两点的直线与双曲线1的公共点的个数为()A0B1C2D3答案A解析关于t的方程t2costsin0的两个不等实根为0,tan(tan0),A(0,0),B(tan,tan2),则过A,B两点的直线方程为yxtan,双曲线1的渐近线方程为yxtan,所以直线yxtan与双曲线没有公共点,故选A14(文)若原点O和点F(2,0)分别为双曲线y21(a0)的中心和左焦点,点P为双曲线右支上的任意一点,则的取值范围为()A32,)B32,)
13、C,)D,)答案B解析a21224,a23,双曲线方程为y21.设P点坐标为(x,y),则(x,y),(x2,y),y21,x22xy2x22x1x22x1(x)2.又x(右支上任意一点),32.故选B(理)设F1、F2分别是双曲线1(a0,b0)的左、右焦点,若双曲线右支上存在一点P满足|PF2|F1F2|,且cosPF1F2,则双曲线的渐近线方程为()A3x4y0B3x5y0C4x3y0D5x4y0答案C解析在PF1F2中,由余弦定理得,cosPF1F2.所以|PF1|c.又|PF1|PF2|2a,即c2c2a,所以ca.代入c2a2b2得.因此,双曲线的渐近线方程为4x3y0.二、填空题
14、15(文)(2013湖南)设F1,F2是双曲线C:1(a0,b0)的两个焦点,若在C上存在一点P,使PF1PF2,且PF1F230,则C的离心率为_答案1解析由已知可得,|PF1|2ccos30c,|PF2|2csin30c,由双曲线的定义,可得cc2a,则e1.(理)(2014山东日照模拟)已知F1,F2为双曲线1(a0,b0)的焦点,过F2作垂直于x轴的直线交双曲线于点P和Q.且F1PQ为正三角形,则双曲线的渐近线方程为_答案yx解析设F2(c,0)(c0),P(c,y0),代入双曲线方程得y0,PQx轴,|PQ|.在RtF1F2P中,PF1F230,|F1F2|PF2|,即2c.又c2a
15、2b2,b22a2或2a23b2(舍去),a0,b0,.故所求双曲线的渐近线方程为yx.16P为双曲线x21右支上一点,M、N分别是圆(x4)2y24和(x4)2y21上的点,则|PM|PN|的最大值为_答案5解析双曲线的两个焦点为F1(4,0)、F2(4,0),为两个圆的圆心,半径分别为r12,r21,|PM|max|PF1|2,|PN|min|PF2|1,故|PM|PN|的最大值为(|PF1|2)(|PF2|1)|PF1|PF2|35.三、解答题17(文)(2013江苏泰州质检)已知点N(1,2),过点N的直线交双曲线x21于A,B两点,且()(1)求直线AB的方程;(2)若过N的另一条直
16、线交双曲线于C,D两点,且0,那么A,B,C,D四点是否共圆?为什么?解析(1)由题意知直线AB的斜率存在设直线AB:yk(x1)2,代入x21得,(2k2)x22k(2k)x(2k)220.(*)设A(x1,y1),B(x2,y2),则x1,x2是方程(*)的两根,2k20且x1x2.(),N是AB的中点,1,k(2k)k22,k1,AB的方程为yx1.(2)将k1代入方程(*)得x22x30,x1或x3,不妨设A(1,0),B(3,4)0,CD垂直平分ABCD所在直线方程为y(x1)2,即y3x,代入双曲线方程整理得x26x110,令C(x3,y3),D(x4,y4)及CD中点M(x0,y
17、0),则x3x46,x3x411,x03,y06,即M(3,6)|CD|x3x4|4,|MC|MD|CD|2,|MA|MB|2,即A,B,C,D到M的距离相等,A,B,C,D四点共圆(理)(2014广东肇庆一模)设双曲线C:1(a0,b0)的一个焦点坐标为(,0),离心率e,A,B是双曲线上的两点,AB的中点为M(1,2)(1)求双曲线C的方程;(2)求直线AB的方程;(3)如果线段AB的垂直平分线与双曲线交于C,D两点,那么A,B,C,D四点是否共圆?为什么?解析(1)依题意得解得a1.所以b2c2a2312,故双曲线C的方程为x21.(2)设A(x1,y1),B(x2,y2),则有两式相减
18、得(x1x2)(x1x2)(y1y2)(y1y2),由题意得x1x2,x1x22,y1y24,所以1,即kAB1.故直线AB的方程为yx1.(3)假设A,B,C,D四点共圆,且圆心为P.因为AB为圆P的弦,所以圆心P在AB的垂直平分线CD上又CD为圆P的弦且垂直平分AB,故圆心P为CD中点M.下面只需证CD的中点M满足|MA|MB|MC|MD|即可由得A(1,0),B(3,4)由此可得直线CD方程:yx3.由得C(32,62),D(32,62),所以CD的中点M(3,6)因为|MA|2,|MB|2,|MC|2,|MD|2,所以|MA|MB|MC|MD|,即A,B,C,D四点在以点M(3,6)为
19、圆心,2为半径的圆上18(文)已知双曲线的中心在原点,焦点在x轴上,其渐近线与圆x2y210x200相切过点P(4,0)作斜率为的直线l,交双曲线左支于A、B两点,交y轴于点C,且满足|PA|PB|PC|2.(1)求双曲线的标准方程;(2)设点M为双曲线上一动点,点N为圆x2(y2)2上一动点,求|MN|的取值范围解析(1)设双曲线的渐近线方程为ykx,因为渐近线与圆(x5)2y25相切,则,即k,所以双曲线的渐近线方程为yx.设双曲线方程为x24y2m,将y(x4)代入双曲线方程中整理得,3x256x1124m0.所以xAxB,xAxB.因为|PA|PB|PC|2,点P、A、B、C共线,且点
20、P在线段AB上,则(xPxA)(xBxP)(xPxC)2,即(xB4)(4xA)16.所以4(xAxB)xAxB320.于是4()320,解得m4.故双曲线方程是x24y24,即y21.(2)设点M(x,y),圆x2(y2)2的圆心为D,则x24y24,点D(0,2)所以|MD|2x2(y2)24y24(y2)25y24y85(y)2.所以|MD|,从而|MN|MD|.故|MN|的取值范围是,)(理)已知斜率为1的直线l与双曲线C:1(a0,b0)相交于B、D两点,且BD的中点为M(1,3)(1)求C的离心率;(2)设C的右顶点为A,右焦点为F,|DF|BF|17,证明:过A、B、D三点的圆与
21、x轴相切解析(1)由题意知,l的方程为:yx2,代入C的方程并化简得,(b2a2)x24a2x4a2a2b20.设B(x1,y1),D(x2,y2),则x1x2,x1x2,由M(1,3)为BD的中点知1,故1,即b23a2,故c2a,C的离心率e2.(2)由知,C的方程为3x2y23a2,A(a,0),F(2a,0),x1x22,x1x20,故不妨设x1a,x2a,|BF|a2x1,|FD|2x2a,|BF|FD|(a2x1)(2x2a)4x1x22a(x1x2)a25a24a8.又|BF|FD|17,故5a24a817,解得a1,或a.故|BD|x1x2|6.连接MA,则由A(1,0),M(1,3)知|MA|3,从而MAMBMD,DAB90,因此以M为圆心,MA为半径的圆过A、B、D三点,且在点A处与x轴相切,所以过A、B、D三点的圆与x轴相切