ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:319.50KB ,
资源ID:251458      下载积分:9 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-251458-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(河北省邯郸市馆陶县第一中学高中数学必修四:2.3.1-2导学案.doc)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

河北省邯郸市馆陶县第一中学高中数学必修四:2.3.1-2导学案.doc

1、 学习目标1. 掌握平面向量基本定理;了解平面向量基本定理的意义;2. 掌握平面向量的正交分解及其坐标表示.学习重点平面向量基本定理, 学习难点利用平面向量基本定理,将任意向量用基向量表示 学习过程一、课前准备(预习教材P93P96)复习1:向量、是共线的两个向量,则、之间的关系可以表示为 .复习2:给定平面内任意两个向量、,请同学们作出向量、.二、新课导学 探索新知探究:平面向量基本定理问题1:复习2中,平面内的任一向量是否都可以用形如的向量表示呢?注意:(1) 我们把不共线向量,叫做表示这一平面内所有向量的一组基底;(2) 基底不惟一,关键是不共线;(3) 由定理可将任一向量在给出基底,的

2、条件下进行分解; (4) 基底给定时,分解形式惟一. 1,2是被,唯一确定的数量问题2:如果两个向量不共线,则它们的位置关系我们怎么表示呢?2.两向量的夹角与垂直::我们规定:已知两个非零向量,作,则 叫做向量与的夹角。如果则的取值范围是 。当 时,表示与同向;当 时,表示与反向;当 时,表示与垂直。记作:.在不共线的两个向量中,即两向量垂直是一种重要的情形,把一个向量分解为_,叫做把向量正交分解。问题3:平面直角坐标系中的每一个点都可以用一对有序实数(即它的坐标)表示. 对于直角坐标平面内的每一个向量,如何表示呢?3、向量的坐标表示:在平面直角坐标系中,分别取与x轴、y轴方向相同的两个_作为

3、基底。对于平面内的任一个向量,由平面向量基本定理可知,有且只有一对实数x,y使得_,这样,平面内的任一向量都可由_唯一确定,我们把有序数对_叫做向量的坐标,记作_此式叫做向量的坐标表示,其中x叫做在x轴上的坐标,y叫做在y轴上的坐标。几个特殊向量的坐标表示 典型例题学法引领:首先画图分析,然后寻找表示。例1、已知梯形中,且,、分别是、的中点,设,。试用为基底表示、.例2、已知是坐标原点,点在第一象限,求向量的坐标.三、小结反思 当堂检测(时量:5分钟 满分:10分)计分:1、已知点A的坐标为(2,3),点B的坐标为(6,5),O为原点,则=_,=_。2、已知向量的方向与x轴的正方向的夹角是30,且,则的坐标为_。3、已知两向量、不共线,若与共线,则实数= .4. 设是平行四边形两对角线与的交点,下列向量组,其中可作为这个平行四边形所在平面表示所有向量的基底是( )与与与与 A. B. C. D.5、已知是的边上的中线,若,则()( ) ( )( ) ( ) 课后作业1、在矩形中,与交于点,若,则等于多少?2 已知点A(2,2), B(-2,2), C(4,6) , D(-5,6), E(-2,-2), F(-5,-6)在平面直角坐标系中,分别作出向量并求向量的坐标。

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1