ImageVerifierCode 换一换
格式:DOCX , 页数:5 ,大小:48.47KB ,
资源ID:245731      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-245731-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2022高考数学人教B版一轮总复习学案:8-3 圆及其方程 WORD版含解析.docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

2022高考数学人教B版一轮总复习学案:8-3 圆及其方程 WORD版含解析.docx

1、8.3圆及其方程必备知识预案自诊知识梳理1.圆的定义及方程定义平面内到一的距离等于的点的集合标准方程(x-a)2+(y-b)2=r2(r0)圆心,半径一般方程x2+y2+Dx+Ey+F=0,圆心,半径温馨提示当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0表示一个点-D2,-E2;当D2+E2-4F0.()2.若圆C的半径为1,圆心C与点(2,0)关于点(1,0)对称,则圆C的标准方程为()A.x2+y2=1B.(x-3)2+y2=1C.(x-1)2+y2=1D.x2+(y-3)2=13.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则圆C的标准方程是()A

2、.(x-2)2+(y-1)2=1B.(x-2)2+(y+1)2=1C.(x+2)2+(y-1)2=1D.(x-3)2+(y-1)2=14.若方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a的取值范围是.5.已知点A(2,0),B(0,4),O为坐标原点,则AOB外接圆的方程为.关键能力学案突破考点求圆的方程【例1】(1)已知圆E经过三点A(0,1),B(2,0),C(0,-1),且圆心在x轴的正半轴上,则圆E的标准方程为()A.x-322+y2=254B.x+342+y2=2516C.x-342+y2=2516D.x-342+y2=254(2)在平面直角坐标系xOy中,以点(0,1

3、)为圆心且与直线x-by+2b+1=0相切的所有圆中,半径最大的圆的标准方程为()A.x2+(y-1)2=4B.x2+(y-1)2=2C.x2+(y-1)2=8D.x2+(y-1)2=16解题心得求圆的方程的方法方法解读适合题型几何法通过研究圆的性质、直线和圆及圆和圆的位置关系,进而求得圆的基本量(圆心、半径)和方程.常用的几何性质如下:(1)圆心在过切点且与切线垂直的直线上;(2)圆心在任一弦的垂直平分线上;(3)当两圆内切或外切时,切点与两圆心三点共线题设条件中有明显的几何特征待定系数法(1)根据条件设出圆的方程,一般地,若题目中有与圆心和半径有关的信息,则选择标准方程(x-a)2+(y-

4、b)2=r2(r0),若已知圆上三点的坐标(或三点坐标易求),则选择一般方程x2+y2+Dx+Ey+F=0(D2+E2-4F0);(2)由题目给出的条件,列出关于a,b,r或D,E,F的方程组;(3)解出a,b,r或D,E,F,代入标准方程或一般方程题设条件中有明显的代数特征对点训练1圆心在直线x-2y-3=0上,且过点A(2,-3),B(-2,-5)的圆的方程为.考点与圆有关的轨迹问题【例2】已知直角三角形ABC的斜边为AB,且点A(-1,0),B(3,0).(1)求直角顶点C的轨迹方程;(2)求直角边BC的中点M的轨迹方程.解题心得求与圆有关的轨迹问题的3种方法(1)直接法:当题目条件中含

5、有与该点有关的等式时,可设出该点的坐标,用坐标表示等式,直接求解轨迹方程.(2)定义法:当题目条件符合圆的定义时,可直接利用定义确定其圆心和半径,写出圆的方程.(3)代入法:当题目条件中已知某动点的轨迹方程,而要求的点与该动点有关时,常找出要求的点与已知点的关系,代入已知点满足的关系式求轨迹方程.对点训练2(1)从圆C:(x-3)2+(y+4)2=4外一点P(x,y)引该圆的一条切线,切点为Q,PQ的长度等于点P到原点O的距离,则点P的轨迹方程为()A.8x-6y-21=0B.8x+6y-21=0C.6x+8y-21=0D.6x-8y-21=0(2)已知点P(2,2),圆C:x2+y2-8y=

6、0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点,则点M的轨迹方程为.考点与圆有关的最值问题(多考向探究)考向1借助目标函数的几何意义求最值【例3】已知点M(m,n)为圆C:x2+y2-4x-14y+45=0上任意一点.(1)求m+2n的最大值;(2)求n-3m+2的最大值和最小值.解题心得借助几何性质求与圆有关的最值问题,常根据代数式的几何意义,借助数形结合思想求解.(1)形如u=y-bx-a形式的最值问题,可转化为动直线斜率的最值问题.(2)形如t=ax+by形式的最值问题,可转化为动直线截距的最值问题.(3)形如m=(x-a)2+(y-b)2形式的最值问题,可转

7、化为动点到定点的距离的平方的最值问题.对点训练3已知实数x,y满足(x-2)2+(y-1)2=1,则z=y+1x的最大值与最小值分别为和.考向2借助圆的几何性质求最值【例4】已知点A(0,2),点P在直线x+y+2=0上运动,点Q在圆C:x2+y2-4x-2y=0上运动,则|PA|+|PQ|的最小值是.解题心得形如|PA|+|PQ|形式的与圆有关的折线段问题(其中P,Q均为动点),要立足两点:(1)减少动点的个数;(2)“曲化直”,即将折线段转化为同一直线上的两线段之和,一般要通过对称性解决.对点训练4(2020山东济宁模拟)已知两点A(0,-3),B(4,0),若点P是圆C:x2+y2-2y=0上的动点,则ABP的面积的最小值为.考向3建立函数关系求最值【例5】(2020福建厦门模拟)设点P(x,y)是圆x2+(y-3)2=1上的动点,定点A(2,0),B(-2,0),则PAPB的最大值为.解题心得利用函数关系求最值时,先根据已知条件列出相关的函数关系式,再根据函数知识或均值不等式求最值.对点训练5(2020宁夏银川模拟)设点P(x,y)是圆(x-3)2+y2=4上的动点,定点A(0,2),B(0,-2),则|PA+PB|的最大值为.

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1