ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:368.50KB ,
资源ID:243094      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-243094-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(新教材2020-2021学年高中人教A版数学必修第2册教学用书:6-4-1 平面几何中的向量方法 6-4-2 向量在物理中的应用举例 WORD版含解析.doc)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

新教材2020-2021学年高中人教A版数学必修第2册教学用书:6-4-1 平面几何中的向量方法 6-4-2 向量在物理中的应用举例 WORD版含解析.doc

1、高考资源网() 您身边的高考专家6.4平面向量的应用6.4.1平面几何中的向量方法6.4.2向量在物理中的应用举例素养目标定方向素养目标学法指导1掌握用向量方法解决简单的几何问题、力学问题等一些实际问题.(直观想象)2体会向量是一种处理几何问题、物理问题的重要工具.(数学抽象)3能够将几何问题和物理问题转化为平面向量问题.(数学建模)4培养运用向量知识解决实际问题和物理问题的能力.(数据分析)1向量是工具,实现这一工具应用的关键是运算,平行与相交是平面几何中的重要线性关系,线性运算常用于解决平行(共线)问题,数量积运算常用于解决相交问题.2凡是涉及平行的问题都可以用数乘运算处理,而与相交有关的

2、夹角、垂直、长度等问题则可以用数量积运算处理.其中基底法和坐标法能实现形与数的相互转化,体现的是数形结合思想.3速度、位移是向量,与线性运算挂钩;功是数量,与数量积运算相连.凡涉及速度、位移均可以考虑用线性运算工具(向量加法的平行四边形法则),而功的问题则直接运用数量积处理.必备知识探新知知识点1用向量方法解决平面几何问题的“三步曲”(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;(3)把运算结果“翻译”成几何关系.知识点2向量在物理中的应用(1)物理问题中常见的向量有力、速度、位移等

3、.(2)向量的加减法运算体现在一些物理量的合成和分解中.(3)动量mv是向量的数乘运算.(4)功是力F与位移s的数量积.关键能力攻重难题型探究题型一向量在平面几何证明问题中的应用典例1如图所示,在正方形ABCD中,P为对角线AC上任一点,PEAB,PFBC,垂足分别为E,F,连接DP,EF,求证:DPEF.证明法一:设正方形ABCD的边长为1,AEa(0a1),则EPAEa,PFEB1a,APa,()()1acos 1801(1a)cos 90aacos 45a(1a)cos 45aa2a(1a)0,即DPEF.法二:设正方形的边长为1,建立如图所示的平面直角坐标系,设P(x,x),则D(0,

4、1),E(x,0),F(1,x),所以(x,x1),(1x,x),由于x(1x)x(x1)0,所以,即DPEF.归纳提升向量法解决平面几何问题的两种方法用向量法解决平面几何问题,一般来说有两种方法:(1)基底法:选取适当的基底(尽量用已知模或夹角的向量作为基底),将题中涉及的向量用基底表示,利用向量的运算法则、运算律或性质计算;(2)坐标法:建立平面直角坐标系,实现向量的坐标化,将几何问题中的长度、垂直、平行等问题转化为代数运算.一般地,题目中已建好坐标系或易建坐标系的问题适合用坐标法.【对点练习】如图所示,在正方形ABCD中,E,F分别是AB,BC的中点,求证:AFDE.解析方法一:设a,b

5、,则|a|b|,ab0,又a,b,所以(b)(a)a2ab|a|2|b|20故,即AFDE.方法二:建立如图所示的平面直角坐标系,设正方形的边长为2,则A(0,0),D(0,2),E(1,0),F(2,1),(2,1),(1,2).因为(2,1)(1,2)220,所以,即AFDE.题型二平面几何中的长度问题典例2如图,平行四边形ABCD中,已知AD1,AB2,对角线BD2求对角线AC的长.分析把,看作一组基底,表示出、,利用|2,可求得的值,进而求出|.解析设a,b,则ab,ab,而|ab|2,52ab4,ab,又|2|ab|2a22abb2142ab6,|,即AC.归纳提升利用向量法解决长度

6、问题的策略向量法求平面几何中的长度问题,即向量长度的求解,一是利用图形特点选择基底,向向量的数量积转化,用公式|a|2a2求解;二是建立坐标系,确定相应向量的坐标,代入公式:若a(x,y),则|a|.【对点练习】已知RtABC中,C90,设ACm,BCn.(1)若D为斜边AB的中点,求证:CDAB;(2)若E为CD的中点,连接AE并延长交BC于F,求AF的长度(用m,n表示).解析(1)证明:以C为坐标原点,以边CB,CA所在的直线分别为x轴,y轴建立平面直角坐标系,如图所示,A(0,m),B(n,0).D为AB的中点,D,|,|,|,即CDAB.(2)E为CD的中点,E,设F(x,0),则,

7、(x,m).A,E,F三点共线,.即(x,m),则故,即x,F,|,即AF.题型三向量在物理中的应用典例3(1)在重300 N的物体上系两根绳子,这两根绳子在铅垂线的两侧,与铅垂线的夹角分别为30,60(如图),求重物平衡时,两根绳子拉力的大小.(2)已知两恒力F1(3,4),F2(6,5)作用于同一质点,使之由点A(20,15)移动到点B(7,0),求F1,F2分别对质点所做的功.分析(1)向量在解决涉及速度、位移等物理量的合成与分解时,实质就是向量的线性运算.(2)物理上力的做功就是力在物体前进方向上的分力与物体位移的乘积,即W|F|s|cosF,s,功是一个实数,它可正可负,也可以为零.

8、力的做功涉及两个向量及这两个向量的夹角,它的实质是向量F与s的数量积.解析(1)如图,两根绳子的拉力之和,且|300 N,AOC30,BOC60.在OAC中,ACOBOC60,AOC30,则OAC90,从而|cos 30150(N),|sin 30150(N),所以|150(N).答:与铅垂线成30角的绳子的拉力是150 N,与铅垂线成60角的绳子的拉力是150 N.(2)设物体在力F作用下的位移为s,则所做的功为WFs.(7,0)(20,15)(13,15).W1F1(3,4)(13,15)3(13)4(15)99(焦),W2F2(6,5)(13,15)6(13)(5)(15)3(焦).归纳

9、提升用向量方法解决物理问题的“三步曲”【对点练习】(1)河水自西向东流动的速度为10 km/h,小船自南岸沿正北方向航行,小船在静水中的速度为10 km/h,求小船的实际航行速度.(2)两个力F1ij,F24i5j作用于同一质点,使该质点从点A(20,15)移动到点B(7,0)(其中i、j分别是与x轴、y轴同方向的单位向量).求:F1、F2分别对该质点所做的功;F1、F2的合力F对该质点所做的功.解析(1)设a,b分别表示水流的速度和小船在静水中的速度,过平面内一点O作a,b,以,为邻边作矩形OACB,连接,如图,则ab,并且即为小船的实际航行速度.|20(km/h),tanAOC,AOC60

10、,小船的实际航行速度为20 km/h,按北偏东30的方向航行.(2)(720)i(015)j13i15j,F1所做的功W1F1sF1(ij)(13i15j)28;F2所做的功W2F2sF2(4i5j)(13i15j)23因为FF1F25i4j,所以F所做的功WFsF(5i4j)(13i15j)5易错警示做功问题因对角度认识不清而致错典例4如图所示,某人用1.5 m长的绳索,施力25 N,把重物沿坡度为30的斜面向上拖了6 m,拖拉点距斜面的垂直高度为1.2 m.求此人对物体所的功.错解记沿斜面向上方向的单位向量为e,则位移s6e,WFs|F|s|cos 25675(J),所以此人对物体所做的功

11、为75 J.错因分析要求此人对物体所做的功,可以转化为求解作用力F与物体的位移s两者之间的数量积,根据向量数量积的公式,关键是求解作用力F与物体的位移s两者之间的夹角的大小,进而根据公式求得此人对物体所做的功.错解中错误地利用了题目中给出的角度,此角度不是作用力F与物体的位移s两者之间的夹角.正解因为绳索长1.5 m,拖拉点距斜面的垂直高度为1.2 m,斜面坡度为30,所以作用力F与斜面之间所成的角度满足sin,所以cos,记沿斜面向上方向的单位为e,则位移s6e,WFs|F|s|cos25630(J),所以此人对物体所做的功为30 J.【对点练习】如图所示,在倾斜角为37(sin370.6),高为2 m的斜面上,质量为5 kg的物体m沿斜面下滑,物体m受到的摩擦力是它对斜面压力的0.5倍,则斜面对物体m的支持力所做的功为_0_J,重力对物体m所做的功为_98_J(g9.8 m/s2).解析物体m的位移大小为|s|(m),则支持力对物体m所做的功为W1Fs|F|s|cos900(J);重力对物体m所做的功为W2Gs|G|s|cos5359.80.698(J).- 8 - 版权所有高考资源网

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1