ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:1.02MB ,
资源ID:242626      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-242626-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(河北省邢台市2022届高三数学上学期入学考试试题(Word版带答案).doc)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

河北省邢台市2022届高三数学上学期入学考试试题(Word版带答案).doc

1、河北省邢台市2022届高三上学期入学考试数学注意事项:1答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在|答题卡上。写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。4本试卷主要考试内容:高考全部内容。一、选择题:本题共8小题,每小题5分,共40分在每小题给出的四个选项中,只有一项是符合题目要求的1复数,则复数z的实部与虚部之和是( )ABC10D182已知集合,若,则a的取值范围是( )ABCD3如果双曲线的离心率为,我

2、们称该双曲线为黄金分割双曲线,简称为黄金双曲线现有一黄金双曲线,则该黄金双曲线C的虚轴长为( )A2B4CD4六氟化硫,化学式为,在常压下是十种无色、无臭、无毒、不燃的稳定气体,有良好的绝缘性,在电器工业方面具有广泛用途六氟化硫分子结构为正八面体结构(正八面体是每个面都是正三角形的八面体),如图所示,硫原子位于正八面体的中心,6个氟原子分别位于正八面体的6个顶点若相邻两个氟原子间的距离为2a,则六氟化硫分子中6个氟原子构成的正八面体的体积是(不计氟原子的大小)ABCD5在的展开式中,项的系数是( )A280B-280C560D-5606已知函数,若,则( )A-7B-3C3D77已知,且,则的

3、最小值是( )A1B2CD8已知函数恰有两个零点,则a的取值范围是( )ABCD二、选择题:本题共44题,每小题5分,共20分在每小题给出的选项中,有多项符合题目要求全部选对的得5分,部分选对的得2分,有选错的得0分9已知向量,则下列结论正确的是( )A若,则B若,则C若,则D若,则10旅游是人们为寻求精神上的愉快感受而进行的非定居性旅行和游览过程中所发生的一切关系和现象的总和随着经济生活水平的不断提高,旅游已经成为人们生活的一部分某地旅游部门从2020年到该地旅游的游客中随机抽取部分游客进行调查,得到各年龄段游客的人数和旅游方式如图所示,则下列结论不正确的有( )A估计2020年到该地旅游的

4、游客选择自助游的中年人的人数少于选择自助游的青年人人数的一半B估计2020年到该地旅游的游客选择自助游的青年人的人数占总游客人数的13.5%C估计2020年到该地旅游的游客选择自助游的老年人和中年人的人数之和比选择自助游的青年人多D估计2020年到该地旅游的游客选择自助游的比率为25% 11已知函数,若函数的三个相邻零点分别为,且,则的值可能是( )ABC4D612已知三棱柱的6个顶点全部在球O的表面上,三棱柱的侧面积为,则球O的表面积可能是( )A4B8C16D32三、填空题:本题共4小题,每小题5分,共20分把答案填在答题卡中的横线上13已知函数则_14小华、小明、小李小章去A,B,C三个

5、工厂参加社会实践,要求每个工厂都有人去,且这四人都在这三个工厂实践,则小华和小李都没去B工厂的概率是_15已知数列的前n项和为,且,则_16已知抛物线的焦点为F,直线与抛物线C交于A,B两点(其中点A在x轴上方),则_四、解答题:本题共6小题,共70分解答应写出必要的文字说明、证明过程或演算步聚17.(10分)在的前n项和,这三个条件中任选一个,补充在下面的问题中并解答问题:在等差数列中,且_(1)求数列的通项公式;(2)若,求数列的前n项和注:如果选择多个条件分别解答,按第一个解答计分18.(12分)在中,角A,B,C所对的边分别为a,b,c,且(1)求角A的大小;(2)若的面积为,求外接圆

6、面积的最小值19(12分)如图,在多面体中四边形是正方形,平面,平面,(1)证明:平面平面(2)求平面与平面所成锐二面角的余弦值20(12分)北京冬季奥运会将于2022年2月4日至2022年2月20日在中华人民共和国北京市和河北省张家口市联合举行这是中国历史上第一次举办冬季奥运会,北京、张家口同为主办城市,也是中国继北京奥运会、南京青奥会之后第三次举办奥运赛事北京冬奥组委对报名参加北京冬奥会志愿者的人员开展冬奥会志愿者的培训活动,并在培训结束后进行了一次考核为了解本次培训活动的效果,从中随机抽取80名志愿者的考核成绩,根据这80名志愿者的考核成绩得到的统计图表如下所示 女志愿者考核成绩频率分布

7、表分组频数频率75,8020.05080,85130.32585,90180.45090,95am95,100b0.075男志愿者考核成绩频率分布直方图若参加这次考核的志愿者考核成绩在90,100内,则考核等级为优秀(1)分别求这次培训考核等级为优秀的男、女志愿者人数;(2)若从样本中考核等级为优秀的志愿者中随机抽取3人进行学习心得分享,记抽到女志愿者的人数为X,求X的分布列及期望21(12分)已知椭圆的左、右焦点分别为,且,点在椭圆C上(1)求椭圆C的标准方程;(2)已知点为椭圆C上一点,过点的直线l与椭圆C交于异于点P的A,B两点,若的面积是,求直线l的方程22(12分)已知函数(1)求函

8、数图象在处的切线方程(2)证明:高三入学数学考试参考答案1B【解析】本题考查复数,考查运算求解能力由题意可得,则复数z的实部是7,虚部是-11,故复数z的实部与虚部之和是2A【解析】本题考查集合的运算,考查逻辑推理能力由题意可得,因为,所以,即3D【解析】本题考查双曲线的性质,考查运算求解能力由题意可得,解得,则,故该黄金双曲线C的虚轴长为4B【解析】本题考查化学分子结构与正八面体的体积,考查空间想象能力与阅读理解能力如图,连接,连接因为,所以,所以平面因为,所以因为四边形是正方形,所以,则,故该正八面体的体积为5C【解析】本题考查二项式定理,考查逻辑推理能力与运算求解能力展开式中,通项令,得

9、,则,故项的系数是5606B【解析】本题考查函数的性质,考查运算求解能力设,则,即,故7C【解析】本题考查基本不等式,考查运算求解能力由题意可得,当且仅当,时,等号成立8D【解析】本题考查导数与函数的零点问题,考查逻辑推理能力令,得设,则由,得;由,得所以在上单调递减,在上单调递增,故,即9AC【解析】本题考查平面向量,考查运算求解能力由,得,则A正确,B错误;由,得,即,则C正确,D错误10ACD【解析】本题考查统计图表,考查数据处理能力设2020年到该地旅游的游客总人数为a,由题意可知游客中老年人、中年人、青年人的人数分别为0.2a,0.35a,0.45a,其中选择自助游的老年人、中年人、

10、青年人的人数分别为0.04a,0.0875a,0.135a因为,所以A错误;2020年到该地旅游的游客选择自助游的青年人的人数与总游客人数的比值为,则B正确;因为,所以C错误;2020年到该地旅游的游客选择自助游的比率为,则D错误11AD【解析】本题考查三角函数的图象与性质,考查数形结合的数学思想由,得,则当时,则,从而,故;当时,则,从而,故综上,或12CD【解析】本题考查简单几何体及其外接球,考查空间想象能力设三棱柱的高为h,因为,所以,则该三棱柱的侧面积为,故设的外接圆半径为r,则设球O的半径为R,则,故球O的表面积为13【解析】本题考查分段函数求值,考查运算求解能力由题意可得,则14【

11、解析】本题考查古典概型,考查运算求解能力由题意可知总的分配情况有种,其中满足条件的情况有种,故所求概率151022【解析】本题考查等比数列,考查运算求解能力因为,所以,所以,即因为,所以,则是首项为2,公比为2的等比数列,故16【解析】本题考查抛物线的性质,考查数形结合的数学思想与运算求解能力由题意可知直线l经过焦点F,设其倾斜角为,则如图,直线是抛物线C的准线,作,则,故,因为,所以,则17解:选(1)设的公差为d由题意可得2分因为,所以,4分则5分选(1)设的公差为d因为,所以,则2分因为,所以,所以4分当时,满足上式,故5分选(1)设的公差为d因为,所以,即2分因为,所以,4分则5分(2

12、)由(1)可得,则7分故10分评分细则:(1)在第一问中,若选择条件解答,没有考虑,扣1分;(2)在第二问中,也可以由,得到;(3)若用其他解法,参照评分标准按步骤给分18解:(1)因为,所以,1分所以,即3分因为,所以,所以4分因为,所以5分(2)由(1)可知,则6分因为的面积为,所以,所以7分由余弦定理可得,则8分设外接圆的半径为r,则,即,10分故外接圆的面积,当且仅当时,等号成立11分即当时,外接圆面积的最小值为12分评分细则:(1)在第一问中,也可以通过把角化为边,得到,再由余弦定理得到,从而求出角A;(2)在第二问中,没有写出取等条件,只要计算正确,不予扣分;(3)若用其他解法,参

13、照评分标准按步骤给分19(1)证明:因为平面,平面,所以1分因为平面,平面,所以平面2分因为四边形是正方形,所以3分因为平面,平面,所以平面4分因为平面,平面,且,所以平面平面5分(2)解:由题意可知,两两垂直,则以D为原点,分别以,的方向为x,y,z轴的正方向,建立如图所示的空间直角坐标系设,则,从而,7分设平面的法向量为,则,令,得9分平面的一个法向量为10分故,即平面与平面所成锐二面角的余弦值为12分评分细则:(1)在第一问中,也可以建立空间直角坐标系,分别求出平面和平面的法向量,通过证明平面和平面的法向量平行,从而得到平面平面;(2)在第二问中,也可以先找出平面和平面所成的锐二面角,再

14、通过余弦定理求出;(3)若用其他解法,参照评分标准按步骤给分20解:(1)由女志愿者考核成绩的频率分布表可知被抽取的女志愿者的人数为1分因为,所以2分所以这次培训考核等级为优秀的女志愿者人数为3分因为被抽取的志愿者人数是80,所以被抽取的男志愿者人数是4分由男志愿者考核成绩频率分布直方图可知男志愿者这次培训考核等级为优秀的频率为,5分则这次培训考核等级为优秀的男志愿者人数为6分(2)由题意可知X的可能取值为0,1,2,37分,8分,9分X的分布列为X0123P故12分评分细则:(1)在第一问中,也可以先求出被抽取的女志愿者的人数,再求出的值,即考核等级为优秀的女志愿者的人数;(2)在第二问中,

15、没有分别求出X对应取值的概率,直接写出X的分布列,扣1分;(3)若用其他解法,参照评分标准按步骤给分21解:(1)设椭圆的半焦距为c,由题意可得,1分解得,3分故椭圆C的标准方程为4分(2)因为在椭圆C上,所以,解得当直线l的斜率为0时,则的面积为因为的面积是,所以直线l的斜率为0不符合题意6分当直线l的斜率不为0或斜率不存在时,设直线l的方程为,联立整理得则,7分故8分因为点P到直线l的距离,所以9分因为的面积是,所以,整理得,解得,即11分故直线l的方程为,即12分评分细则:(1)在第一问中,可以先根据,求出c的值,从而求出的值,再把点M的坐标代入椭圆C的方程,从而求出a,b的值,最后得到椭圆C的标准方程;(2)在第二问中,没有考虑直线l的斜率为0的情况,扣1分;(3)在第二问中,也可以按直线l的斜率存在和不存在分类讨论计算;(4)若用其他解法,参照评分标准按步骤给分22(1)解:因为,所以,1分则2分因为,3分所以所求切线方程为,即4分(2)证明:设,则5分由,得;由,得所以在上单调递减,在上单调递增,6分故,即,当且仅当时取等号7分因为,所以,所以,所以9分当时,10分所以,11分则,即12分评分细则:(1)在第一问中,所求切线方程写成,不予扣分;(2)在第二问中,也可以将转化为,然后构造函数和,得到,从而得到;(3)若用其他解法,参照评分标准按步骤给分

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1