收藏 分享(赏)

强化训练人教版九年级数学上册第二十二章二次函数难点解析试题(含详细解析).docx

上传人:高**** 文档编号:2390273 上传时间:2024-06-17 格式:DOCX 页数:27 大小:549.46KB
下载 相关 举报
强化训练人教版九年级数学上册第二十二章二次函数难点解析试题(含详细解析).docx_第1页
第1页 / 共27页
强化训练人教版九年级数学上册第二十二章二次函数难点解析试题(含详细解析).docx_第2页
第2页 / 共27页
强化训练人教版九年级数学上册第二十二章二次函数难点解析试题(含详细解析).docx_第3页
第3页 / 共27页
强化训练人教版九年级数学上册第二十二章二次函数难点解析试题(含详细解析).docx_第4页
第4页 / 共27页
强化训练人教版九年级数学上册第二十二章二次函数难点解析试题(含详细解析).docx_第5页
第5页 / 共27页
强化训练人教版九年级数学上册第二十二章二次函数难点解析试题(含详细解析).docx_第6页
第6页 / 共27页
强化训练人教版九年级数学上册第二十二章二次函数难点解析试题(含详细解析).docx_第7页
第7页 / 共27页
强化训练人教版九年级数学上册第二十二章二次函数难点解析试题(含详细解析).docx_第8页
第8页 / 共27页
强化训练人教版九年级数学上册第二十二章二次函数难点解析试题(含详细解析).docx_第9页
第9页 / 共27页
强化训练人教版九年级数学上册第二十二章二次函数难点解析试题(含详细解析).docx_第10页
第10页 / 共27页
强化训练人教版九年级数学上册第二十二章二次函数难点解析试题(含详细解析).docx_第11页
第11页 / 共27页
强化训练人教版九年级数学上册第二十二章二次函数难点解析试题(含详细解析).docx_第12页
第12页 / 共27页
强化训练人教版九年级数学上册第二十二章二次函数难点解析试题(含详细解析).docx_第13页
第13页 / 共27页
强化训练人教版九年级数学上册第二十二章二次函数难点解析试题(含详细解析).docx_第14页
第14页 / 共27页
强化训练人教版九年级数学上册第二十二章二次函数难点解析试题(含详细解析).docx_第15页
第15页 / 共27页
强化训练人教版九年级数学上册第二十二章二次函数难点解析试题(含详细解析).docx_第16页
第16页 / 共27页
强化训练人教版九年级数学上册第二十二章二次函数难点解析试题(含详细解析).docx_第17页
第17页 / 共27页
强化训练人教版九年级数学上册第二十二章二次函数难点解析试题(含详细解析).docx_第18页
第18页 / 共27页
强化训练人教版九年级数学上册第二十二章二次函数难点解析试题(含详细解析).docx_第19页
第19页 / 共27页
强化训练人教版九年级数学上册第二十二章二次函数难点解析试题(含详细解析).docx_第20页
第20页 / 共27页
强化训练人教版九年级数学上册第二十二章二次函数难点解析试题(含详细解析).docx_第21页
第21页 / 共27页
强化训练人教版九年级数学上册第二十二章二次函数难点解析试题(含详细解析).docx_第22页
第22页 / 共27页
强化训练人教版九年级数学上册第二十二章二次函数难点解析试题(含详细解析).docx_第23页
第23页 / 共27页
强化训练人教版九年级数学上册第二十二章二次函数难点解析试题(含详细解析).docx_第24页
第24页 / 共27页
强化训练人教版九年级数学上册第二十二章二次函数难点解析试题(含详细解析).docx_第25页
第25页 / 共27页
强化训练人教版九年级数学上册第二十二章二次函数难点解析试题(含详细解析).docx_第26页
第26页 / 共27页
强化训练人教版九年级数学上册第二十二章二次函数难点解析试题(含详细解析).docx_第27页
第27页 / 共27页
亲,该文档总共27页,全部预览完了,如果喜欢就下载吧!
资源描述

1、人教版九年级数学上册第二十二章二次函数难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列关于二次函数的说法,正确的是()A对称轴是直线B当时有最小值C顶点坐标是D当时,y随x的增大而减少2、若函

2、数y(a1)x2+2x+a21是二次函数,则()Aa1Ba1Ca1Da13、已知抛物线yax2bxc(ay2By1y2Cy1y2D不能确定4、已知学校航模组设计制作的火箭升空高度h(m)与飞行时间t(s)满足函数表达式ht224t1,则下列说法中正确的是()A点火后1s和点火后3s的升空高度相同B点火后24s火箭落于地面C火箭升空的最大高度为145mD点火后10s的升空高度为139m5、二次函数的图象的对称轴是()ABCD6、已知点(1,y1),(2,y2)都在函数yx2的图象上,则()Ay1y2By1y2Cy1y2Dy1,y2大小不确定7、已知函数ykx27x7的图象和x轴有交点,则k的取值

3、范围是()ABC且k0D且k08、二次函数的图象如图所示,则下列结论中不正确的是( )AB函数的最大值为C当时,D9、记某商品销售单价为x元,商家销售此种商品每月获得的销售利润为y元,且y是关于x的二次函数已知当商家将此种商品销售单价分别定为55元或75元时,他每月均可获得销售利润1800元;当商家将此种商品销售单价定为80元时,他每月可获得销售利润1550元,则y与x的函数关系式是()Ay(x60)2+1825By2(x60)2+1850Cy(x65)2+1900Dy2(x65)2+200010、如图,抛物线y= a1x2与抛物线y=a2x2 +bx的交点P在第三象限,过点P作x轴的平行线,

4、与两条抛物线分别交于点M、N,若,则的值是( )A3B2CD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、二次函数yax2+bx+c的图象如图所示,以下结论:abc0;4acb2;2a+b0;其顶点坐标为(,2);当x时,y随x的增大而减小;a+b+c0中,正确的有_(只填序号)2、若二次函数图象的顶点在x轴上方,则实数m的取值范围是_3、在函数中,当x1时,y随x的增大而 _(填“增大”或“减小”)4、抛物线是二次函数,则m=_5、抛物线yax2+bx+c(a0)的部分图象如图所示,其与x轴的一个交点坐标为(3,0),对称轴为x1,则当y0时,x的取值范围是_三、解

5、答题(5小题,每小题10分,共计50分)1、如图,抛物线yax2+bx(a0,b0)交x轴于O,A两点,顶点为B(2,4)(1)求抛物线的解析式;(2)直线ykx+m(k0)过点B,且与抛物线交于另一点D(点D与点A不重合),交y轴于点C过点D作DEx轴于点E,连接AB,CE若k1,求CDE的面积;求证:CEAB2、某工厂生产并销售A,B两种型号车床共14台,生产并销售1台A型车床可以获利10万元;如果生产并销售不超过4台B型车床,则每台B型车床可以获利17万元,如果超出4台B型车床,则每超出1台,每台B型车床获利将均减少1万元设生产并销售B型车床台(1)当时,完成以下两个问题:请补全下面的表

6、格:A型B型车床数量/台_每台车床获利/万元10_若生产并销售B型车床比生产并销售A型车床获得的利润多70万元,问:生产并销售B型车床多少台?(2)当014时,设生产并销售A,B两种型号车床获得的总利润为W万元,如何分配生产并销售A,B两种车床的数量,使获得的总利润W最大?并求出最大利润3、在平面直角坐标系中,抛物线的顶点为P,且与y轴交于点A,与直线交于点B,C(点B在点C的左侧).(1)求抛物线的顶点P的坐标(用含a的代数式表示);(2)横、纵坐标都是整数的点叫做整点,记抛物线与线段AC围成的封闭区域(不含边界)为“W区域”.当时,请直接写出“W区域”内的整点个数;当“W区域”内恰有2个整

7、点时,结合函数图象,直接写出a的取值范围.4、如图,二次函数的图象交轴于、两点,交轴于点,点的坐标为,顶点的坐标为求二次函数的解析式和直线的解析式;点是直线上的一个动点,过点作轴的垂线,交抛物线于点,当点在第一象限时,求线段长度的最大值;在抛物线上是否存在异于、的点,使中边上的高为?若存在求出点的坐标;若不存在请说明理由5、某公司电商平台,在2021年五一长假期间,举行了商品打折促销活动,经市场调查发现,某种商品的周销售量y(件)是关于售价x(元/件)的一次函数,下表仅列出了该商品的售价x,周销售量y,周销售利润W(元)的三组对应值数据x407090y1809030W360045002100(

8、1)求y关于x的函数解析式(不要求写出自变量的取值范围);(2)若该商品进价a(元/件),售价x为多少时,周销售利润W最大?并求出此时的最大利润;(3)因疫情期间,该商品进价提高了m(元/件)(),公司为回馈消费者,规定该商品售价x不得超过55(元/件),且该商品在今后的销售中,周销售量与售价仍满足(1)中的函数关系,若周销售最大利润是4050元,求m的值-参考答案-一、单选题1、B【解析】【分析】根据二次函数的性质对各选项分析判断后利用排除法求解【详解】解:由二次函数可知对称轴是直线,故选项A错误,不符合题意;由二次函数可知开口向上,当时有最小值,故选项B正确,符合题意;由二次函数可知顶点坐

9、标为(3,-5),故选项C错误,不符合题意;由二次函数可知顶点坐标为(3,-5),对称轴是直线,当x3时,y随x的增大而减小,故选项D错误,不符合题意;故选:B【考点】本题考查了二次函数的性质,主要利用了开口方向,顶点坐标,对称轴以及二次函数的增减性2、A【解析】【分析】利用二次函数定义进行解答即可【详解】解:由题意得:a10,解得:a1,故选:A【考点】本题主要考查了二次函数的定义,准确计算是解题的关键3、A【解析】【分析】根据二次函数图象的对称轴位置以及开口方向,可得C(5,y1)距对称轴的距离比D(5,y2)距对称轴的距离小,进而即可得到答案【详解】抛物线yax2bxc(ay2,故选A【

10、考点】本题主要考查二次函数的性质,掌握用抛物线的轴对称性比较二次函数值的大小,是解题的关键4、C【解析】【分析】分别求出t=1、3、24、10时h的值可判断A、B、D三个选项,将解析式配方成顶点式可判断C选项【详解】解:A、当t=1时,h=24;当t=3时,h=64;所以点火后1s和点火后3s的升空高度不相同,此选项错误;B、当t=24时,h=10,所以点火后24s火箭离地面的高度为1m,此选项错误;C、由ht224t1=(t-12)2+145知火箭升空的最大高度为145m,此选项正确;D、当t=10时,h=141m,此选项错误;故选:C【考点】本题主要考查二次函数的应用,解题的关键是熟练掌握

11、二次函数的性质5、A【解析】【分析】将二次函数写成顶点式,进而可得对称轴【详解】解:二次函数的图象的对称轴是故选A【考点】本题考查了二次函数的性质,将一般式转化为顶点式是解题的关键6、B【解析】【分析】分别求出和的值即可得到答案【详解】解:点(1,y1),(2,y2)都在函数yx2的图象上,故选B【考点】本题主要考查了二次函数图像上点的坐标特征,正确求出和是解题的关键7、B【解析】【分析】对分情况进行讨论,时,为一次函数,符合题意;时,二次函数,求解即可【详解】解:当时,函数为,为一次函数,与x轴有交点,符合题意;当,函数为,为二次函数,因为图像与x轴有交点所以,解得且综上,故选B【考点】此题

12、考查了二次函数与x轴有交点的条件,解题的关键是对分情况进行讨论,易错点是容易忽略的情况8、D【解析】【分析】根据抛物线开口方向、抛物线的对称轴位置和抛物线与y轴的交点位置可判断a、b、c的符号,利用抛物线的对称性可得到抛物线与x轴的另一个交点坐标为(-3,0),从而分别判断各选项【详解】解:抛物线开口向下,a0,抛物线的对称轴为直线x=-1,即b=2a,则b0,抛物线与y轴交于正半轴,c0,则abc0,故A正确;当x=-1时,y取最大值为,故B正确;由于开口向下,对称轴为直线x=-1,则点(1,0)关于直线x=-1对称的点为(-3,0),即抛物线与x轴交于(1,0),(-3,0),当时,故C正

13、确;由图像可知:当x=-2时,y0,即,故D错误;故选D【考点】本题考查了二次函数与系数的关系:对于二次函数y=ax2+bx+c(a0),二次项系数a决定抛物线的开口方向和大小:当a0时,抛物线向上开口;抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab0),对称轴在y轴左; 当a与b异号时(即ab0),对称轴在y轴右常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c)9、D【解析】【分析】设二次函数的解析式为:yax2bxc,根据题意列方程组即可得到结论【详解】解:设二次函数的解析式为:yax2+bx+c,当x55,y1800,当x75,y1800,当

14、x80时,y1550, ,解得a2,b260,c6450,y与x的函数关系式是y2x2+260x64502(x65)2+2000,故选:D【考点】本题考查了根据实际问题列二次函数关系式,正确的列方程组是解题的关键10、B【解析】【分析】设 ,则由抛物线的对称性可知,从而可得,再由即可得到,再根据即可得到【详解】解:设 ,由抛物线的对称性可知,即,又,即,或(舍去),故选B【考点】本题主要考查了二次函数的对称性,二次函数上点的坐标特征,解题的关键在于能够求出二、填空题1、【解析】【分析】根据图象可判断,由x=1时,y0,可判断【详解】由图象可得,a0,c0,b0,=b24ac0,对称轴为x=,a

15、bc0,4acb2,当时,y随x的增大而减小故正确,2a+b0,故正确,由图象可得顶点纵坐标小于2,则错误,当x=1时,y=a+b+c0,故错误故答案为:【考点】本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定2、【解析】【分析】先求出顶点坐标,再令顶点的纵坐标大于0即可求解【详解】解:二次函数的对称轴为,当时,顶点坐标为,顶点在x轴上方,即,故答案为:【考点】本题考查二次函数的顶点坐标,掌握求二次函数顶点坐标的方法是解题的关键3、增大【解析】【分析】根据其顶点式函数可知,抛物线开口向上,对称轴为

16、,在对称轴右侧y随x的增大而增大,可得到答案【详解】由题意可知: 函数,开口向上,在对称轴右侧y随x的增大而增大,又对称轴为,当时,y随的增大而增大,故答案为:增大【考点】本题主要考查了二次函数的对称轴及增减性,掌握当二次函数开口向上时,在对称轴的右侧y随x的增大而增大,在对称轴的左侧y随x的增大而减小是解题的关键4、3【解析】【分析】根据二次函数的定义:一般地,形如(a、b、c是常数且a0)的函数叫做二次函数,进行求解即可【详解】解:抛物线是二次函数,故答案为:3【考点】本题主要考查了二次函数的定义,解题的关键在于能够熟知二次函数的定义5、3x1【解析】【分析】根据抛物线与x轴的一个交点坐标

17、和对称轴,由抛物线的对称性可求抛物线与x轴的另一个交点,再根据抛物线的增减性可求当y0时,x的取值范围【详解】解:抛物线yax2+bx+c(a0)与x轴的一个交点为(3,0),对称轴为x1,抛物线与x轴的另一个交点为(1,0),由图象可知,当y0时,x的取值范围是3x1故答案为:3x1【考点】本题考查了二次函数的性质和数形结合能力,熟练掌握并灵活运用是解题的关键三、解答题1、(1)y=x2-4x;(2);见解析【解析】【分析】(1)先求出A点的坐标,然后用待定系数法求解即可;(2)先求出直线BD的解析式,然后得到D点的坐标,由此求解即可;过点B作BFx轴于F,则AFB=COE=90,由(1)得

18、A(4,0),B(2,-4),则AF=2,BF=4,联立得,求得,从而可以得到,即可证明AFBEOC,得到FAB=OEC,由此即可证明【详解】解:(1)抛物线yax2+bx(a0,b0)交x轴于O,A两点,顶点为B(2,4)抛物线的对称轴为,A(4,0),解得,抛物线的解析式为:;(2)当k=1时,直线的解析式为,直线经过B(2,-4),直线的解析式为,解得或(舍去)D(3,-3),DE=3,OE=3,;如图,过点B作BFx轴于F,AFB=COE=90,由(1)得A(4,0),B(2,-4),F(2,0),AF=2,BF=4,联立得,OE=,C是直线与y轴的交点,C(0,m),OC=-m,AF

19、BEOC,FAB=OEC,AB/CE【考点】本题主要考查了一次函数和二次函数的综合,待定系数法求函数解析式,相似三角形的性质与判定,平行线的判定,一元二次方程根与系数的关系等等,解题的关键在于能够熟练掌握相关知识进行求解2、(1),;10台;(2)分配产销A型车床9台、B型车床5台;或产销A型车床8台、B型车床6台,此时可获得总利润最大值170万元【解析】【分析】(1)由题意可知,生产并销售B型车床x台时,生产A型车床(14-x)台,当时,每台就要比17万元少()万元,所以每台获利,也就是()万元;根据题意可得根据题意:然后解方程即可;(2)当04时,W,当414时,W,分别求出两个范围内的最

20、大值即可得到答案.【详解】解:(1)当时,每台就要比17万元少()万元所以每台获利,也就是()万元补全表格如下面:A型B型车床数量/台每台车床获利/万元10此时,由A型获得的利润是10()万元,由B型可获得利润为万元,根据题意:, ,014, ,即应产销B型车床10台;(2)当04时,当04A型B型车床数量/台每台车床获利/万元1017利润此时,W,该函数值随着的增大而增大,当取最大值4时,W最大1168(万元);当414时,当414A型B型车床数量/台每台车床获利/万元10利润则W,当或时(均满足条件414),W达最大值W最大2170(万元),W最大2 W最大1, 应分配产销A型车床9台、B

21、型车床5台;或产销A型车床8台、B型车床6台,此时可获得总利润最大值170万元【考点】本题主要考查了一元二次方程的实际应用,一次函数和二次函数的实际应用,解题的关键在于能够根据题意列出合适的方程或函数关系式求解.3、(1)顶点P的坐标为;(2) 6个; ,【解析】【分析】(1)由抛物线解析式直接可求;(2)由已知可知A(0,2),C(2+ ,-2),画出函数图象,观察图象可得;分两种情况求:当a0时,抛物线定点经过(2,-2)时,a=1,抛物线定点经过(2,-1)时,a= ,则a1;当a0时,抛物线定点经过(2,2)时,a=-1,抛物线定点经过(2,1)时,a=-,则-1a-【详解】解:(1)

22、y=ax2-4ax+2a=a(x-2)2-2a, 顶点为(2,-2a);(2)如图,a=2,y=2x2-8x+2,y=-2,A(0,2),C(2+,-2),有6个整数点;当a0时,抛物线定点经过(2,-2)时,a=1,抛物线定点经过(2,-1)时,; 当时,抛物线顶点经过点(2,2)时,;抛物线顶点经过点(2,1)时,; 综上所述:,【考点】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质是解题的关键4、; 有最大值; 存在满足条件的点,其坐标为或【解析】【分析】可设抛物线解析式为顶点式,由点坐标可求得抛物线的解析式,则可求得点坐标,利用待定系数法可求得直线解析式;设出点坐标,从而可

23、表示出的长度,利用二次函数的性质可求得其最大值;过作轴,交于点,过和于,可设出点坐标,表示出的长度,由条件可证得为等腰直角三角形,则可得到关于点坐标的方程,可求得点坐标【详解】解:抛物线的顶点的坐标为,可设抛物线解析式为,点在该抛物线的图象上,解得,抛物线解析式为,即,点在轴上,令可得,点坐标为,可设直线解析式为,把点坐标代入可得,解得,直线解析式为;设点横坐标为,则,当时,有最大值;如图,过作轴交于点,交轴于点,作于,设,则,是等腰直角三角形,当中边上的高为时,即,当时,方程无实数根,当时,解得或,或,综上可知存在满足条件的点,其坐标为或【考点】本题为二次函数的综合应用,涉及待定系数法、二次

24、函数的性质、等腰直角三角形的性质及方程思想等知识在中主要是待定系数法的考查,注意抛物线顶点式的应用,在中用点坐标表示出的长是解题的关键,在中构造等腰直角三角形求得的长是解题的关键本题考查知识点较多,综合性较强,难度适中5、(1);(2)售价60元时,周销售利润最大为4800元;(3)【解析】【分析】(1)依题意设y=kx+b,解方程组即可得到结论;(2)根据题意得,再由表格数据求出,得到,根据二次函数的顶点式,求出最值即可; (3)根据题意得,由于对称轴是直线,根据二次函数的性质即可得到结论【详解】解:(1)设,由题意有,解得,所以y关于x的函数解析式为;(2)由(1),又由表可得:,所以售价时,周销售利润W最大,最大利润为4800;(3)由题意,其对称轴,时上述函数单调递增,所以只有时周销售利润最大,【考点】本题考查了二次函数在实际生活中的应用,重点是掌握求最值的问题注意:数学应用题来源于实践,用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识,总利润等于总收入减去总成本,然后再利用二次函数求最值

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3