1、九年级数学上册第二十一章一元二次方程专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、用配方法解一元二次方程,配方正确的是()ABCD2、如果关于的一元二次方程有两个实数根,那么的取值范围是()AB
2、且C且D3、下列方程中,一定是关于x的一元二次方程的是()ABCD4、关于的一元二次方程有两个相等的实数根,则的值为()ABCD-5、已知是关于的一元二次方程的一个实数根,则实数的值是()A0B1C3D16、一元二次方程有实数根,则k的取值范围是()A且BC且D或7、已知关于x的一元二次方程x2+2x+m2=0有两个实数根,m为正整数,且该方程的根都是整数,则符合条件的所有正整数m的和为()A6B5C4D38、关于的一元二次方程的根的情况是()A有两不相等实数根B有两相等实数根C无实数根D不能确定9、在解一元二次方程x2+px+q0时,小红看错了常数项q,得到方程的两个根是3,1小明看错了一次
3、项系数P,得到方程的两个根是5,4,则原来的方程是()Ax2+2x30Bx2+2x200Cx22x200Dx22x3010、一元二次方程x22x=0的两根分别为x1和x2,则x1x2为()A2B1C2D0第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若关于x的一元二次方程的根的判别式的值为4,则m的值为_2、若m,n是关于x的方程x2-3x-30的两根,则代数式m2+n2-2mn_3、如图,在ABC中,AC50cm,BC40cm,C90,点P从点A出发沿AC边向点C以2cm/s的速度匀速移动,同时另一点Q从点C出发沿CB边向点B以3cm/s的速度匀速移动,当PCQ的面
4、积等于300cm2时,运动时间为_4、已知,且则的值是_5、中国“一带一路”倡议给沿线国家带来很大的经济效益若沿线某地区居民2017年人均收入300美元,预计2019年人均收入将达到432美元,则2017年到2019年该地区居民年人均收入增长率为_.三、解答题(5小题,每小题10分,共计50分)1、解下列方程:(1);(2)2、阅读下面内容,并答题:我们知道,计算n边形的对角线条数公式为n(n3)如果一个n边形共有20条对角线,那么可以得到方程n(n3)20解得n8或n5(舍去),这个n边形是八边形根据以上内容,问:(1)若一个多边形共有9条对角线,求这个多边形的边数;(2)小明说:“我求得一
5、个n边形共有10条对角线”,你认为小明同学的说法正确吗?为什么?3、一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:售价x(元/千克)50607080销售量y(千克)100908070(1)求y与x的函数关系式;(2)该批发商若想获得4000元的利润,应将售价定为多少元?4、商场某种商品平均每天可销售30件,每件盈利50元 为了尽快减少库存,商场决定采取适当的降价措施 经调查发现,每件商品每降价1元,商场平均每天可多售出 2件设每件商品降价x元 据此规律,请回答:(
6、1)商场日销售量增加 件,每件商品盈利 元(用含x的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?5、解方程:(1)2x(x2)x23;(2)-参考答案-一、单选题1、A【解析】【分析】按照配方法的步骤进行求解即可得答案【详解】解:,移项得,二次项系数化1的,配方得,即,故选:A【考点】本题考查了配方法解一元二次方程,配方法的一般步骤为(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方2、C【解析】【分析】根据关于x的一元二次方程kx2-3x+1=0有两个实数根,知=(-3)2-4k10且
7、k0,解之可得【详解】解:关于x的一元二次方程kx2-3x+1=0有两个实数根,=(-3)2-4k10且k0,解得k且k0,故选:C【考点】本题主要考查根的判别式与一元二次方程的定义,一元二次方程ax2+bx+c=0(a0)的根与=b2-4ac有如下关系:当0时,方程有两个不相等的两个实数根;当=0时,方程有两个相等的两个实数根;当0时,方程无实数根上面的结论反过来也成立3、B【解析】【分析】根据一元二次方程的概念(只含一个未知数,并且含有未知数的项的次数最高为2次的整式方程是一元二次方程)逐一进行判断即可得【详解】解:A、, 当时,不是一元二次方程,故不符合题意;B、,是一元二次方程,符合题
8、意;C、,不是整式方程,故不符合题意;D、,整理得:,不是一元二次方程,故不符合题意;故选:B【考点】本题考查了一元二次方程的定义,熟练掌握其定义是解题的关键4、A【解析】【分析】由题意,根据一元二次方程根的判别式值为零,求可解【详解】解:由一元二次方程有两个相等实根可得,判别式等于0可得,得,故应选A【考点】本题考查了一元二次方程根的情况与判别式的关系,解答时注意=0方程有两个相等的实数根5、B【解析】【分析】把x代入方程就得到一个关于m的方程,就可以求出m的值【详解】解:根据题意得,解得;故选:B【考点】本题主要考查了一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是
9、一元二次方程的解又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根6、A【解析】【分析】根据一元二次方程二次项系数不为0和0列不等式即可【详解】解:由一元二次方程有实数根,可列不等式组为:,解得,且,故选:A【考点】本题考查了一元二次方程根的判别式,解题关键是熟练运用根的判别式列不等式,注意:一元二次方程二次项系数不为07、B【解析】【分析】根据一元二次方程根的判别式和一元二次方程的解法结合已知条件进行分析解答即可.【详解】关于x的一元二次方程x2+2x+m2=0有两个实数根,=,解得:,又m为正整数,m=1或2或3,(1)当m=1时,原方程为x2
10、+2x-1=0,此时方程的两根均不为整数,故m=1不符合要求;(2)当m=2时,原方程为x2+2x=0,此时方程的两根分别为0和-2,符合题中要求;(3)当m=3时,原方程为x2+2x+1=0,此时方程的两根都为1,符合题中要求; m=2或m=3符合题意,m的所有符合题意的正整数取值的和为:2+3=5.故选B.【考点】读懂题意,熟知“在一元二次方程中,若方程有两个实数根,则=”是解答本题的关键.8、A【解析】【详解】【分析】根据一元二次方程的根的判别式进行判断即可.【详解】,=-(k+3)2-4k=k2+6k+9-4k=(k+1)2+8,(k+1)20,(k+1)2+80,即0,方程有两个不相
11、等实数根,故选A.【考点】本题考查了一元二次方程ax2+bx+c=0(a0,a,b,c为常数)的根的判别式=b2-4ac当0时,方程有两个不相等的实数根;当=0时,方程有两个相等的实数根;当0时,方程没有实数根9、B【解析】【分析】分别按照看错的情况构建出一元二次方程,再舍去错误信息,从而可得正确答案.【详解】解: 小红看错了常数项q,得到方程的两个根是3,1,所以此时方程为: 即: 小明看错了一次项系数P,得到方程的两个根是5,4,所以此时方程为: 即: 从而正确的方程是: 故选:【考点】本题考查的是根据一元二次方程的根构建一元二次方程,掌握利用一元二次方程的根构建方程的方法是解题的关键.1
12、0、D【解析】【详解】分析:根据根与系数的关系可得出x1x2=0,此题得解详解:一元二次方程x22x=0的两根分别为x1和x2,x1x2=0故选D点睛:本题考查了根与系数的关系,牢记两根之积等于是解题的关键二、填空题1、【解析】【分析】利用根的判别式,建立关于m的方程求得m的值【详解】关于x的一元二次方程的根的判别式的值为4,解得故答案为:【考点】本题考查了一元二次方程(a0)的根的判别式2、21【解析】【分析】先根据根与系数的关系得到m+n3,mn3,再根据完全平方公式变形得到m2+n22mn(m+n)24mn,然后利用整体代入的方法计算【详解】解:m,n是关于x的方程x2-3x-30的两根
13、,m+n3,mn3,m2+n22mn(m+n)24mn324(3)21故答案为:21【考点】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c0(a0)的两根时,x1+x2,x1x23、5s【解析】【分析】设x秒后,PCQ的面积等于300m2,根据路程速度时间,可用时间x表示出CP和CQ的长,然后根据直角三角形的面积公式,得出方程,求出未知数,然后看看解是否符合题意,将不合题意的舍去,即可得出时间的值【详解】解:设x秒后,PCQ的面积等于300m2,有:(502x)3x300,x225x1000,x120,x25当x20时,CQ3x32060BC40,即x20s不合题意,舍去
14、答:5秒后,PCQ的面积等于300cm2故答案是:5s【知识点】此题主要考查一元二次方程的应用,对于面积问题应熟记各种图形的面积公式,然后根据题意列出方程是解题关键4、4或-1【解析】【分析】将已知等式两边同除以进行变形,再利用换元法和因式分解法解一元二次方程即可得【详解】将两边同除以得:令则因式分解得:解得或即的值是4或故答案为:4或【考点】本题考查了利用换元法和因式分解法解一元二次方程,将已知等式进行正确变形是解题关键5、20【解析】【分析】设该地区人均收入增长率为x,根据2017年人均收入300美元,预计2019年人均收入将达到432美元,可列方程求解.【详解】解:设该地区人均收入增长率
15、为x,则300(1+x)2=432,(1+x)2=1.44,解得x=0.2(x=-2.2舍),该地区人均收入增长率为20.故本题答案应为:20.【考点】一元二次方程在实际生活中的应用是本题的考点,根据题意列出方程是解题的关键.三、解答题1、 (1),(2),【解析】【分析】(1)将分解因式得到(x-2)(x-4)=0,得到x-2=0,x-4=0,解得,;(2)将化简得到,分解因式得到(x-3)(x+1)=0,得到x-3=0,x+1=0,求出,(1),(x-2)(x-4)=0,x-2=0,x-4=0,x=2或x=4,;(2)(2),(x-3)(x+1)=0,x-3=0,x+1=0,x=3或x=-
16、1,【考点】本题考查了解一元二次方程,解决问题的关键是把方程化成一般形式,用分解因式的方法解答2、 (1)6(2)错误,理由见解析【解析】【分析】(1)利用题中给出的对角线条数公式即可求解;(2)利用题中给出的对角线条数公式列出一元二次方程,求解方程的根,根据方程是否有正整数解来判断即可(1)设这个多边形的边数是n,则n(n3)9,解得n6或n3(舍去)这个多边形的边数是6;(2)小明同学的说法是不正确的,理由如下:由题可得n(n3)10,解得n,符合方程的正整数n不存在,n边形不可能有10条对角线,故小明的说法不正确【考点】本题主要考查了一元二次方程的应用,通过方程是否有正整数解来判断是否存
17、在有10条对角线的多边形是解答本题的关键3、(1)yx+150(0x90);(2)70【解析】【分析】(1)根据图表中的各数可得出y与x成一次函数关系,从而结合图表的数可得出y与x的关系式(2)根据想获得4000元的利润,列出方程求解即可【详解】(1)设y与x的函数关系式为ykx+b(k0),根据题意得,解得故y与x的函数关系式为yx+150(0x90);(2)根据题意得(x+150)(x20)4000,解得x170,x210090(不合题意,舍去)答:该批发商若想获得4000元的利润,应将售价定为70元【考点】本题考查了一元二次方程的应用,一次函数的应用,解题关键是要读懂题目的意思,根据题目
18、给出的条件,利用待定系数法求出一次函数的解析式与列出方程4、(1) 2x,(2)每件商品降价20元,商场日盈利可达2100元【解析】【详解】(1) 2x,(2)解:由题意,得(302x)(50x)2 100解之得x115,x220该商场为尽快减少库存,降价越多越吸引顾客x20答:每件商品降价20元,商场日盈利可达2 100元5、(1)x1=3,x2=1;(2)x1=,x2=0【解析】【分析】(1)先去括号,移项,合并同类项,再利用因式分解法求解即可;(2)直接利用因式分解法求解即可【详解】解:(1)2x(x2)x23,去括号得:2x24x-x2+3=0,合并同类项得:x24x+3=0,分解因式得:(x-3)(x-1)=0,解得:x1=3,x2=1;(2),分解因式得:,x1=,x2=0【考点】本题主要考查解一元二次方程,熟练掌握因式分解法解方程,是解题的关键