1、京改版八年级数学上册第十章分式章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、新型冠状病毒的直径大约为0.000000125米,0.000000125用科学记数法表示为()ABCD2、某农场挖一条
2、480米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖米,那么下列方程正确的是()ABCD3、计算 的结果为ABCD4、关于x的分式方程1的解为正数,则字母a的取值范围为()Aa1Ba1Ca1Da15、若分式的值为零,则的值为()A-3B-1C3D6、当x2时,分式的值是()A15B3C3D157、若把分式中的和同时扩大为原来的3倍,则分式的值()A扩大到原来的3倍B扩大到原来的6倍C缩小为原来的D不变8、若关于x的方程有增根,则m的值为()A2B1C0D9、我国古代著作四元玉鉴记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽每株脚钱三文足,无钱准与一株椽
3、“其大意为:现请人代买一批椽,这批椽的价钱为6210文如果每件椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为株,则符合题意的方程是()ABCD10、若代数式有意义,则实数的取值范围是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、方程的解为_2、计算的结果是_3、计算:_4、方程的解是_5、阅读下面材料:一个含有多个字母的式子中,如果任意交换两个字母的位置,式子的值都不变,这样的式子就叫做对称式例如:a+b+c,abc,a2+b2,含有两个字母a,b的对称式的基本对称式是a+b和ab,像a2
4、+b2,(a+2)(b+2)等对称式都可以用a+b,ab表示,例如:a2+b2(a+b)22ab请根据以上材料解决下列问题:(1)式子a2b2a2b2中,属于对称式的是_(填序号);(2)已知(x+a)(x+b)x2+mx+n若,求对称式的值;若n4,直接写出对称式的最小值三、解答题(5小题,每小题10分,共计50分)1、计算:(1);(2)2、计算:(1)(2)3、某商场计划在年前用30000元购进一批彩灯,由于货源紧张,厂商提价销售,实际的进货价格比原来提高了20%,结果比原计划少购进100盏彩灯该商场实际购进彩灯的单价是多少元?4、已知T(1)化简T;(2)若正方形ABCD的边长为a,且
5、它的面积为9,求T的值5、先化简,再求值:,其中-参考答案-一、单选题1、D【解析】【分析】小于1的数可以化为,对照数字化简即可【详解】解:0.000000125=故选:D【考点】本题主要考查科学记数法,熟练掌握公式化法是解题的关键2、A【解析】【分析】设原计划每天挖x米,则实际每天挖(x+20)米,由题意可得等量关系:原计划所用时间-实际所用时间=4,根据等量关系列出方程即可【详解】解:设原计划每天挖x米,原计划所用时间为,实际所用时间为,依题意得:,故选:A【考点】本题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,再列出方程3、A【解析】【详解】【分析】先计
6、算(-a)2,然后再进行约分即可得.【详解】=b,故选A.【考点】本题考查了分式的乘法,熟练掌握分式乘法的运算法则是解题的关键.4、B【解析】【详解】解:分式方程去分母得:2x-a=x+1,解得:x=a+1根据题意得:a+10且a+1+10,解得:a-1且a-2即字母a的取值范围为a-1故选B点睛:本题考查了分式方程的解,本题需注意在任何时候都要考虑分母不为05、A【解析】【分析】根据分式的值为零的条件即可求出答案【详解】解:由题意可知:解得:x=-3,故选:A【考点】本题考查分式的值,解题的关键是熟练运用分式的值为零的条件6、A【解析】【分析】先把分子分母进行分解因式,然后化简,最后把代入到
7、分式中进行正确的计算即可得到答案.【详解】解:把代入上式中原式故选A.【考点】本题主要考查了分式的化简求值,解题的关键在于能够熟练掌握相关知识点进行求解运算.7、D【解析】【分析】根据分式的基本性质即可求出答案【详解】解:,把分式中的和同时扩大为原来的3倍,则分式的值不变,故选:D【考点】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型8、B【解析】【分析】先通过去分母把分式方程化为整式方程,再把增根代入整式方程,求出参数m,即可【详解】解:把原方程去分母得:,原分式方程有增根:x=1,即:m=1,故选B【考点】本题主要考查分式方程增根的意义,理解使分式方程的分母为
8、零的根,是分式方程的增根,是解题的关键9、A【解析】【分析】根据“这批椽的价钱为6210文”、“每件椽的运费为3文,剩下的椽的运费恰好等于一株椽的价钱”列出方程解答【详解】解:由题意得:,故选A.【考点】本题考查了分式方程的应用解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,准确的找到等量关系并用方程表示出来是解题的关键10、D【解析】【分析】分式有意义的条件是分母不为【详解】代数式有意义,故选D【考点】本题运用了分式有意义的条件知识点,关键要知道分母不为是分式有意义的条件二、填空题1、【解析】【分析】先通分,再根据分式有意义的条件即分母不为0,分式为0即
9、分式的分子为0解题即可【详解】解:故答案为:【考点】本题考查解分式方程,涉及分式有意义的条件、分式的值为0等知识,是重要考点,难度较易,掌握相关知识是解题关键2、【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果即可【详解】解:故答案为:【考点】本题主要考查了分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则3、【解析】【分析】先计算括号里的同分母的分式,再利用分式的乘法法则、分式的基本性质化简计算即可【详解】原式,故答案为:【考点】本题考查分式的混合运算,涉及同分母的分式加法、分式的乘法、分式的基本性质等知识,熟练掌握分式的运算顺序和运算法则是解答的关
10、键4、x1【解析】【分析】原方程去分母得到整式方程,求解整式方程,最后检验即可【详解】解:,1,方程两边都乘2x1,得2x2x1,解得:x1,检验:当x1时,2x10,所以x1是原方程的解,即原方程的解是x1,故答案为:x1【考点】本题考查了解分式方程,把分式方程转化为整式方程是解答本题的关键,注意解分式方程不一定要检验5、(1);(2)6;的最小值为【解析】【分析】(1)根据对称式的定义进行判断;(2)先得到a+b2,ab,再变形得到,然后利用整体代入的方法计算;根据分式的性质变形得到,再利用完全平方公式变形得到(a+b)22ab+,所以原式=m2+,然后根据非负数的性质可确定的最小值【详解
11、】解:(1)式子a2b2a2b2中,属于对称式的是 故答案为;(2)x2+(a+b)x+abx2+mx+na+bm,abna+b2,ab,6;(a+b)22ab+m2+8+m2+,m20,的最小值为【考点】本题主要考查完全平方公式,关键是根据题目所给的定义及完全平方公式进行求解即可三、解答题1、 (1)(2)【解析】【分析】(1)先计算乘法,再合并,即可求解;(2)先计算括号内的,再计算除法,即可求解(1)解:原式(2)解:原式【考点】本题主要考查了整式的混合运算,分式的混合运算,熟练掌握相关运算法则是解题的关键2、(1)27;(2)【解析】【分析】(1)首先计算乘方、除法和负指数幂,然后进行
12、加减计算即可;(2)按照幂的运算法则计算,再合并同类项【详解】解:(1)=27;(2)=【考点】本题主要考查了有理数的混合运算,整式的混合运算,熟练掌握实数以内的各种运算法则,是解题的关键3、商场实际购进彩灯的单价是60元【解析】【分析】设商场原计划购进彩灯的单价为元,则商场实际购进彩灯的单价为元,由题意:某商场计划在年前用30000元购进一批彩灯,由于货源紧张,厂商提价销售,实际的进货价格比原来提高了,结果比原计划少购进100盏彩灯列出分式方程,解方程即可【详解】解:设商场原计划购进彩灯的单价为元,则商场实际购进彩灯的单价为元,根据题意得:,解得:,经检验,是原分式方程的解,且符合题意,则(
13、元,答:商场实际购进彩灯的单价为60元【考点】本题考查了分式方程的应用,找准等量关系,解题的关键是正确列出分式方程4、(1);(2)【解析】【分析】(1)原式通分并利用同分母分式的加法法则计算即可求出值;(2)由正方形的面积求出边长a的值,代入计算即可求出T的值【详解】(1)T;(2)由正方形的面积为9,得到a3,则T【考点】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键5、,-10【解析】【分析】根据分式的减法运算以及乘除运算进行化简,然后将x的值代入原式即可求出答案【详解】解:.当x5时,原式-10.【考点】本题考查分式的化简求值,解题的关键是熟练运用分式的加减运算以及乘除运算法则,本题属于基础题型