1、1.4.2(2)正弦、余弦函数的性质(二)教学目的:知识目标:要求学生能理解三角函数的奇、偶性和单调性;能力目标:掌握正、余弦函数的奇、偶性的判断,并能求出正、余弦函数的单调区间。 德育目标:激发学生学习数学的兴趣和积极性,陶冶学生的情操,培养学生坚忍不拔的意志,实事求是的科学学习态度和勇于创新的精神。 教学重点:正、余弦函数的奇、偶性和单调性;来源:Z|xx|k.Com教学难点:正、余弦函数奇、偶性和单调性的理解与应用教学过程:复习引入:偶函数、奇函数的定义,反映在图象上,说明函数的图象有怎样的对称性呢?二、讲解新课: 奇偶性 请同学们观察正、余弦函数的图形,说出函数图象有怎样的对称性?其特
2、点是什么?(1)余弦函数的图形当自变量取一对相反数时,函数y取同一值。例如:f(-)=,f()= ,即f(-)=f(); 由于cos(x)=cosx f(-x)= f(x). 以上情况反映在图象上就是:如果点(x,y)是函数y=cosx的图象上的任一点,那么,与它关于y轴的对称点(-x,y)也在函数y=cosx的图象上,这时,我们说函数y=cosx是偶函数。 (2)正弦函数的图形观察函数y=sinx的图象,当自变量取一对相反数时,它们对应的函数值有什么关系?这个事实反映在图象上,说明函数的图象有怎样的对称性呢?函数的图象关于原点对称。也就是说,如果点(x,y)是函数y=sinx的图象上任一点,
3、那么与它关于原点对称的点(-x,-y)也在函数y=sinx的图象上,这时,我们说函数y=sinx是奇函数。来源:学,科,网2.单调性从ysinx,x的图象上可看出:当x,时,曲线逐渐上升,sinx的值由1增大到1.当x,时,曲线逐渐下降,sinx的值由1减小到1.结合上述周期性可知:正弦函数在每一个闭区间2k,2k(kZ)上都是增函数,其值从1增大到1;在每一个闭区间2k,2k(kZ)上都是减函数,其值从1减小到1.余弦函数在每一个闭区间(2k1),2k(kZ)上都是增函数,其值从1增加到1;在每一个闭区间2k,(2k1)(kZ)上都是减函数,其值从1减小到1.3.有关对称轴观察正、余弦函数的
4、图形,可知y=sinx的对称轴为x= kZ y=cosx的对称轴为x= kZ练习1。(1)写出函数的对称轴; (2)的一条对称轴是( C )来源:学科网ZXXK(A) x轴, (B) y轴, (C) 直线, (D) 直线思考:P46面11题。4.例题讲解例1 判断下列函数的奇偶性 (1) (2)例2 函数f(x)sinx图象的对称轴是 ;对称中心是 .例3P38面例3来源:学*科*网例4 不通过求值,指出下列各式大于0还是小于0; 例5 求函数 的单调递增区间;思考:你能求的单调递增区间吗?练习2:P40面的练习来源:学+科+网三、小 结:本节课学习了以下内容:正弦、余弦函数的性质1 单调性2 奇偶性3 周期性五、课后作业:习案作业十。