1、一。单项选择题。(本部分共5道选择题)1设m、n表示不同直线,、表示不同平面,则下列结论中正确的是()A若m,mn,则nB若m,n,m,n,则C若,m,mn,则nD若,m,nm,n,则n解析A选项不正确,n还有可能在平面内,B选项不正确,平面还有可能与平面相交,C选项不正确,n也有可能在平面内,选项D正确答案D2函数f(x)(a0且a1)是R上的减函数,则a的取值范围是()A(0,1) B,1)C(0, D(0,解析:据单调性定义,f(x)为减函数应满足:即a1.答案:B3若数列an的通项公式是an(1)n(3n2),则a1a2a10()A15 B12 C12 D15解析设bn3n2,则数列b
2、n是以1为首项,3为公差的等差数列,所以a1a2a9a10(b1)b2(b9)b10(b2b1)(b4b3)(b10b9)5315.答案A4.已知则( )A. B. C. D. 解析 因为,都小于1且大于0,故排除C,D;又因为都是以4为底的对数,真数大,函数值也大,所以,故选B.答案B5分别以正方形ABCD的四条边为直径画半圆,重叠部分如图中阴影区域所示,若向该正方形内随机投一点,则该点落在阴影区域的概率为()A. B.C. D.解析设正方形边长为2,阴影区域的面积的一半等于半径为1的圆减去圆内接正方形的面积,即为2,则阴影区域的面积为24,所以所求概率为P.答案B1. 在长为12cm的线段
3、AB上任取一点C. 现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积大于20cm2的概率为_解析 设线段AC的长为cm,则线段CB的长为()cm,那么矩形的面积为cm2,由,解得。又,所以该矩形面积小于32cm2的概率为,故选C.答案 2若等边ABC的边长为2,平面内一点M满足,则_.解析(构造法)等边三角形的边长为2,如图建立直角坐标系,(,3),2.答案2(,3),.(0,3).【点评】 本题构造直角坐标系,通过坐标运算容易理解和运算三解答题。(本部分共1道解答题)已知向量m,n.(1)若mn1,求cos的值;(2)记f(x)mn,在ABC中,角A,B,C的对边分别是a,b,c,且满足(2ac)cos Bbcos C,求函数f(A)的取值范围解析(1)mnsin cos cos2 sin sin ,mn1,sin.cos12sin2,coscos.(2)(2ac)cos Bbcos C,由正弦定理得(2sin Asin C)cos Bsin Bcos C,2sin Acos Bsin Ccos Bsin Bcos C.2sin Acos Bsin(BC)ABC,sin(BC)sin A0.cos B,0B,B,0A.,sin.又f(x)sin.f(A)sin.故函数f(A)的取值范围是.