ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:192KB ,
资源ID:222066      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-222066-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2018版高中数学人教版A版必修一学案:第三单元 3-2-1 几类不同增长的函数模型 WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2018版高中数学人教版A版必修一学案:第三单元 3-2-1 几类不同增长的函数模型 WORD版含答案.doc

1、3.2函数模型及其应用3.2.1几类不同增长的函数模型学习目标1.掌握常见增长函数的定义、图象、性质、并体会增长快慢;理解直线上升,对数增长,指数爆炸的含义(重点).2.会分析具体的实际问题,并进行数学建模解决实际问题(重点)预习教材P95P101,完成下面问题:知识点三种函数模型的性质yax(a1)ylogax(a1)yxn(n0)在(0,)上的增减性增函数增函数增函数图象的变化趋势随x增大逐渐近似与y轴平行随x增大逐渐近似与x轴平行随n值而不同增长速度yax(a1):随着x的增大,y增长速度越来越快,会远远大于yxn(n0)的增长速度,ylogax(a1)的增长速度越来越慢存在一个x0,当

2、xx0时,有axxnlogax【预习评价】(正确的打“”,错误的打“”)(1)当x每增加一个单位时,y增加或减少的量为定值,则y是x的一次函数()(2)函数yx衰减的速度越来越慢()(3)不存在一个实数m,使得当xm时,1.1xx100.()提示(1)因为一次函数的图象是直线,所以当x增加一个单位时,y增加或减少的量为定值(2)由函数yx的图象可知其衰减的速度越来越慢(3)根据指数函数和幂函数增长速度的比较可知存在一个实数m,使得当xm时,1.1xx100.题型一几类函数模型的增长差异【例1】(1)下列函数中,增长速度最快的是()Ay2 017xByx2 017Cylog2 017xDy2 0

3、17x(2)四个自变量y1,y2,y3,y4随变量x变化的数据如下表:x151015202530y1226101226401626901y22321 02432 7681.051063.361071.07109y32102030405060y424.3225.3225.9076.3226.6446.907则关于x呈指数型函数变化的变量是_解析(1)比较幂函数、指数函数与对数函数可知,指数函数增长速度最快,故选A(2)以爆炸式增长的变量呈指数函数变化从表格中可以看出,四个变量y1,y2,y3,y4均是从2开始变化,且都是越来越大,但是增长速度不同,其中变量y2的增长速度最快,画出它们的图象(图略

4、),可知变量y2关于x呈指数型函数变化答案(1)A(2)y2规律方法常见的函数模型及增长特点(1)线性函数模型:线性函数模型ykxb(k0)的增长特点是直线上升,其增长速度不变(2)指数函数模型:能用指数型函数f(x)abxc(a,b,c为常数,a0,b1)表达的函数模型,其增长特点是随着自变量x的增大,函数值增长的速度越来越快,常称之为“指数爆炸”(3)对数函数模型:能用对数型函数f(x)mlogaxn(m,n,a为常数,m0,x0,a1)表达的函数模型,其增长的特点是开始阶段增长得较快,但随着x的逐渐增大,其函数值变化得越来越慢,常称之为“蜗牛式增长”(4)幂函数模型:能用幂型函数f(x)

5、axb(a,b,为常数,a0,1)表达的函数模型,其增长情况由a和的取值确定【训练1】下列函数中随x的增大而增长速度最快的是()AyexBy100 ln xCyx100Dy1002x解析指数函数yax,在a1时呈爆炸式增长,并且a值越大,增长速度越快,应选A答案A典例迁移题型二指数函数、对数函数与幂函数模型的比较【例2】函数f(x)2x和g(x)x3的图象如图所示设两函数的图象交于点A(x1,y1),B(x2,y2),且x1g(1),f(2)g(2),f(9)g(10),所以1x12,9x210,所以x16x2,从图象上可以看出,当x1xx2时,f(x)g(x),所以f(6)x2时,f(x)g

6、(x),所以f(2 011)g(2 011)又因为g(2 011)g(6),所以f(2 011)g(2 011)g(6)f(6)【迁移1】(变换条件)在例2中,若将“函数f(x)2x”改为“f(x)3x”,又如何求解第(1)题呢?解由图象的变化趋势以及指数函数和幂函数的增长速度可知:C1对应的函数为g(x)x3,C2对应的函数为f(x)3x.【迁移2】(变换所求)本例条件不变,例2(2)题中结论改为:试结合图象,判断f(8),g(8),f(2 015),g(2 015)的大小解因为f(1)g(1),f(2)g(2),f(9)g(10),所以1x12,9x210,所以x18x2,从图象上可以看出

7、,当x1xx2时,f(x)g(x),所以f(8)x2时,f(x)g(x),所以f(2 015)g(2 015),又因为g(2 015)g(8),所以f(2 015)g(2 015)g(8)f(8)规律方法由图象判断指数函数、对数函数和幂函数的方法根据图象判断增长型的指数函数、对数函数和幂函数时,通常是观察函数图象上升得快慢,即随着自变量的增长,图象最“陡”的函数是指数函数,图象趋于平缓的函数是对数函数题型三函数模型的选择问题【例3】某化工厂开发研制了一种新产品,在前三个月的月生产量依次为100t,120t,130t.为了预测今后各个月的生产量,需要以这三个月的月产量为依据,用一个函数来模拟月产

8、量y(t)与月序数x之间的关系对此模拟函数可选用二次函数yf(x)ax2bxc(a,b,c均为待定系数,xN*)或函数yg(x)pqxr(p,q,r均为待定系数,xN*),现在已知该厂这种新产品在第四个月的月产量为137t,则选用这两个函数中的哪一个作为模拟函数较好?解根据题意可列方程组解得所以yf(x)5x235x70.同理yg(x)800.5x140.再将x4分别代入与式得f(4)54235470130(t),g(4)800.54140135(t)与f(4)相比,g(4)在数值上更为接近第四个月的实际月产量,所以式作为模拟函数比式更好,故选用函数yg(x)pqxr作为模拟函数较好规律方法建

9、立函数模型应遵循的三个原则(1)简化原则:建立函数模型,原型一定要简化,抓主要因素,主要变量,尽量建立较低阶、较简便的模型(2)可推演原则:建立模型,一定要有意义,既能作理论分析,又能计算、推理,且能得出正确结论(3)反映性原则:建立模型,应与原型具有“相似性”,所得模型的解应具有说明问题的功能,能回到具体问题中解决问题【训练2】某债券市场发行三种债券,A种面值为100元,一年到期本息和为103元;B种面值为50元,半年到期本息和为51.4元;C种面值为100元,但买入价为97元,一年到期本息和为100元作为购买者,分析这三种债券的收益,如果只能购买一种债券,你认为应购买哪种?解A种债券的收益

10、是每100元一年到期收益3元;B种债券的半年利率为,所以100元一年到期的本息和为1002105.68(元),收益为5.68元;C种债券的利率为,100元一年到期的本息和为100103.09(元),收益为3.09元通过以上分析,应购买B种债券课堂达标1如表是函数值y随自变量x变化的一组数据,由此判断它最可能的函数模型为()x45678910y15171921232527A一次函数模型B二次函数模型C指数函数模型D对数函数模型解析随着自变量每增加1函数值增加2,函数值的增量是均匀的,故为线性函数即一次函数模型故选A答案A2当x越来越大时,下列函数中,增长速度最快的应是()Ay3xBylog3xC

11、yx3Dy3x解析几种函数模型中,指数函数增长最快,故选D答案D3某林区的森林蓄积量每年比上一年平均增长10.4%,要增长到原来的x倍,需经过y年,则函数yf(x)的图象大致是()解析设该林区的森林原有蓄积量为a,由题意,axa(10.104)y,故ylog1.104x(x1),yf(x)的图象大致为D中图象答案D4当2x4时,2x,x2,log2x的大小关系是()A2xx2log2xBx22xlog2xC2xlog2xx2Dx2log2x2x解析法一在同一平面直角坐标系中分别画出函数ylog2x,yx2,y2x在区间(2,4)上从上往下依次是yx2,y2x,ylog2x的图象,所以x22xl

12、og2x.法二比较三个函数值的大小,作为选择题,可以采用特殊值代入法可取x3,经检验易知选B答案B5有甲乙两种商品,经销这两种商品所能获得的利润分别是p万元和q万元,它们与投入资金m(万元)的关系式为pm,q.今有3万元资金投入这两种商品若设甲商品投资x万元,投资两种商品所获得的总利润为y万元(1)写出y关于x的函数表达式;(2)如何分配资金可使获得的总利润最大?并求最大利润的值解(1)由题意知,对甲种商品投资x万元,获总利润为y万元,则对乙种商品的投资为(3x)万元,所以yx(0x3)(2)令t(0t),则x3t2,所以y(3t2)t2,所以当t时,ymax1.05(万元)由t可求得x0.75(万元),3x2.25(万元),所以为了获得最大利润,对甲乙两种商品的资金投入应分别为0.75万元和2.25万元,此时获得最大利润为1.05万元课堂小结三种函数模型的选取(1)当增长速度变化很快时,常常选用指数函数模型(2)当要求不断增长,但又不会增长过快,也不会增长到很大时,常常选用对数函数模型(3)幂函数模型yxn(n0),则可以描述增长幅度不同的变化:n值较小(n1)时,增长较慢;n值较大(n1)时,增长较快

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3