1、高考资源网() 您身边的高考专家课题: 圆的标准方程课 型:新授课教学目标: 1、掌握圆的标准方程,能根据圆心、半径写出圆的标准方程。2、会用待定系数法求圆的标准方程。教学重点:圆的标准方程教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程。教学过程:(一)、情境设置:在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,圆是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢?探索研究:(二)、探索研究:确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b)
2、,半径为r。(其中a、b、r都是常数,r0)设M(x,y)为这个圆上任意一点,那么点M满足的条件是(引导学生自己列出)P=M|MA|=r,由两点间的距离公式让学生写出点M适合的条件化简可得: 引导学生自己证明为圆的方程,得出结论。方程就是圆心为A(a,b),半径为r的圆的方程,我们把它叫做圆的标准方程。(三)、知识应用与解题研究例1(课本例1)写出圆心为,半径长等于5的圆的方程,并判断点是否在这个圆上。分析探求:可以从计算点到圆心的距离入手。探究:点与圆的关系的判断方法:(1),点在圆外(2)=,点在圆上(3),点在圆内解:例2(课本例2)的三个顶点的坐标是求它的外接圆的方程.师生共同分析:不
3、在同一条直线上的三个点可以确定一个圆,三角形有唯一的外接圆.从圆的标准方程 可知,要确定圆的标准方程,可用待定系数法确定三个参数.解:例3(课本例3)已知圆心为的圆经过点和,且圆心在上,求圆心为的圆的标准方程.师生共同分析: 如图,确定一个圆只需确定圆心位置与半径大小.圆心为的圆经过点和,由于圆心与A,B两点的距离相等,所以圆心在线段AB的垂直平分线m上,又圆心在直线上,因此圆心是直线与直线m的交点,半径长等于或。解:总结归纳:(教师启发,学生自己比较、归纳)比较例2、例3可得出圆的标准方程的两种求法:、 根据题设条件,列出关于的方程组,解方程组得到的值,写出圆的标准方程.根据确定圆的要素,以及题设条件,分别求出圆心坐标和半径大小,然后再写出圆的标准方程.(四)、课堂练习(课本P120练习1,2,3,4)归纳小结:1、 圆的标准方程。2、 点与圆的位置关系的判断方法。3、 根据已知条件求圆的标准方程的方法。作业布置:课本习题4.1A组第2,3,4题.课后记:- 3 - 版权所有高考资源网