收藏 分享(赏)

[原创]2012年高三数学一轮复习资料第五章 导数及其运用第2讲 导数在研究函数中的应用.doc

上传人:高**** 文档编号:21725 上传时间:2024-05-23 格式:DOC 页数:13 大小:1.13MB
下载 相关 举报
[原创]2012年高三数学一轮复习资料第五章 导数及其运用第2讲 导数在研究函数中的应用.doc_第1页
第1页 / 共13页
[原创]2012年高三数学一轮复习资料第五章 导数及其运用第2讲 导数在研究函数中的应用.doc_第2页
第2页 / 共13页
[原创]2012年高三数学一轮复习资料第五章 导数及其运用第2讲 导数在研究函数中的应用.doc_第3页
第3页 / 共13页
[原创]2012年高三数学一轮复习资料第五章 导数及其运用第2讲 导数在研究函数中的应用.doc_第4页
第4页 / 共13页
[原创]2012年高三数学一轮复习资料第五章 导数及其运用第2讲 导数在研究函数中的应用.doc_第5页
第5页 / 共13页
[原创]2012年高三数学一轮复习资料第五章 导数及其运用第2讲 导数在研究函数中的应用.doc_第6页
第6页 / 共13页
[原创]2012年高三数学一轮复习资料第五章 导数及其运用第2讲 导数在研究函数中的应用.doc_第7页
第7页 / 共13页
[原创]2012年高三数学一轮复习资料第五章 导数及其运用第2讲 导数在研究函数中的应用.doc_第8页
第8页 / 共13页
[原创]2012年高三数学一轮复习资料第五章 导数及其运用第2讲 导数在研究函数中的应用.doc_第9页
第9页 / 共13页
[原创]2012年高三数学一轮复习资料第五章 导数及其运用第2讲 导数在研究函数中的应用.doc_第10页
第10页 / 共13页
[原创]2012年高三数学一轮复习资料第五章 导数及其运用第2讲 导数在研究函数中的应用.doc_第11页
第11页 / 共13页
[原创]2012年高三数学一轮复习资料第五章 导数及其运用第2讲 导数在研究函数中的应用.doc_第12页
第12页 / 共13页
[原创]2012年高三数学一轮复习资料第五章 导数及其运用第2讲 导数在研究函数中的应用.doc_第13页
第13页 / 共13页
亲,该文档总共13页,全部预览完了,如果喜欢就下载吧!
资源描述

1、第2讲 导数在研究函数中的应用 知 识 梳理 1. 函数的单调性与导数的关系一般地,函数的单调性与其导函数的正负有如下关系:在某个区间内,如果,那么函数在这个区间内 ;如果,那么函数在这个区间内 .解析:单调递增;单调递减2. 判别f(x0)是极大、极小值的方法若满足,且在的两侧的导数异号,则是的极值点,是极值,并且如果在两侧满足“左正右负”,则是的 ,是极大值;如果在两侧满足“左负右正”,则是的极小值点,是 解析:极大值点;极小值.3解题规律技巧妙法总结: 求函数的极值的步骤:(1)确定函数的定义区间,求导数f(x) .(2)求方程f(x)=0的根.(3)用函数的导数为0的点,顺次将函数的定

2、义区间分成若干小开区间,并列成表格.检查f(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号,那么f(x)在这个根处无极值.4求函数最值的步骤:(1)求出在上的极值.(2)求出端点函数值.(3)比较极值和端点值,确定最大值或最小值. 重 难 点 突 破 1.重点:熟悉利用导数处理单调性、极值与最值的一般思路,熟练掌握求常见函数的单调区间和极值与最值的方法2.难点:与参数相关单调性和极值最值问题3.重难点:借助导数研究函数与不等式的综合问题(1)在求可导函数的极值时,应注意可导函数的驻点可能是它的极值点

3、,也可能不是极值点。问题1. 设,令,讨论在内的单调性并求极值;点拨:根据求导法则有,故,于是,2减极小值增列表如下:故知在内是减函数,在内是增函数,所以,在处取得极小值(2)借助导数处理函数的单调性,进而研究不等关系关键在于构造函数.问题2.已知函数是上的可导函数,若在时恒成立.(1)求证:函数在上是增函数;(2)求证:当时,有. 点拨:由转化为为增函数是解答本题关键.类似由转化为为增函数等思考问题的方法是我们必须学会的.(1)由得因为,所以在时恒成立,所以函数在上是增函数.(2)由(1)知函数在上是增函数,所以当时,有成立,从而两式相加得 热 点 考 点 题 型 探 析考点1: 导数与函数

4、的单调性题型1.讨论函数的单调性例1(08广东高考)设,函数,试讨论函数的单调性【解题思路】先求导再解和【解析】 对于,当时,函数在上是增函数;当时,函数在上是减函数,在上是增函数;对于,当时,函数在上是减函数;当时,函数在上是减函数,在上是增函数。【名师指引】解题规律技巧妙法总结: 求函数单调区间的一般步骤.(1) 求函数的导数(2)令解不等式,得的范围就是单调增区间;令解不等式,得的范围就是单调减区间(3)对照定义域得出结论.误区警示求函数单调区间时,容易忽视定义域,如求函数的单调增区间,错误率高,请你一试,该题正确答案为.题型2.由单调性求参数的值或取值范围例2: 若在区间1,1上单调递

5、增,求的取值范围.【解题思路】解这类题时,通常令(函数在区间上递增)或(函数在区间上递减),得出恒成立的条件,再利用处理不等式恒成立的方法获解.解析:又在区间1,1上单调递增在1,1上恒成立 即在1,1的最大值为 故的取值范围为【名师指引】:本题主要考查函数的单调性与导数正负值的关系,要特别注意导数值等于零的用法.题型3.借助单调性处理不等关系例3. 当,求证【解题思路】先移项,再证左边恒大于0解析:设函数当时, ,故在递增,当时,,又,即,故【名师指引】若要证的不等式两边是两类不同的基本函数,往往构造函数,借助于函数的单调性来证明【新题导练】.1. 若函数f(x)=x3ax2+1在(0,2)

6、内单调递减,则实数a的取值范围是A.a3 B.a=2C.a3D.0a0恒成立,y=x3+x在(,+)上为增函数,没有减区间.答案:A3. 已知函数,设()求函数的单调区间;()若以函数图像上任意一点为切点的切线的斜率恒成立,求实数的最小值;解析:(I),由,在上单调递增。 由,在上单调递减。的单调递减区间为,单调递增区间为。(II),恒成立当时,取得最大值。,考点2: 导数与函数的极值和最大(小)值.题型1.利用导数求函数的极值和最大(小)值例1. 若函数在处取得极值,则 .【解题思路】若在附近的左侧,右侧,且,那么是的极大值;若在附近的左侧,右侧,且,那么是的极小值.解析因为可导,且,所以,

7、解得.经验证当时, 函数在处取得极大值.【名师指引】 若是可导函数,注意是为函数极值点的必要条件.要确定极值点还需在左右判断单调性.例2(2008深圳南中)设函数(),其中,求函数的极大值和极小值【解题思路】先求驻点,再列表判断极值求出极值。解析:.,令,解得或由于,当变化时,的正负如下表:因此,函数在处取得极小值,且;函数在处取得极大值,且【名师指引】求极值问题严格按解题步骤进行。例3. (广东省深圳外国语学校2009届高三上学期第二次统测)已知函数.()求的最小值;()若对所有都有,求实数的取值范围.【解题思路】先求极值再求端点值,比较求出最大(小)值.当区间只有一个极大(小)值时,该值就

8、是最大(小)值解析:的定义域为, 1分 的导数. 3分令,解得;令,解得.从而在单调递减,在单调递增. 5分所以,当时,取得最小值. 6分()解法一:令,则, 8分 若,当时,故在上为增函数,所以,时,即. 10分 若,方程的根为 ,此时,若,则,故在该区间为减函数.所以时,即,与题设相矛盾. 13分综上,满足条件的的取值范围是. 14分解法二:依题意,得在上恒成立,即不等式对于恒成立 . 8分令, 则. 10分当时,因为, 故是上的增函数, 所以 的最小值是, 13分所以的取值范围是. 14分【名师指引】求函数在闭区间上的最大值(或最小值)的步骤:求在内的极大(小)值,将极大(小)值与端点处

9、的函数值进行比较,其中较大者的一个是最大者,较小的一个是最小者题型2.已知函数的极值和最大(小)值,求参数的值或取值范围。例3(广东省六校2009届高三第二次联考)已知函数图像上的点处的切线方程为(1)若函数在时有极值,求的表达式(2)函数在区间上单调递增,求实数的取值范围【解题思路】求函数的解析式一般用待定系法法,求参数的取值范围一般需建立关于参数的不等式(组)解析:, -2分因为函数在处的切线斜率为-3,所以,即,-3分又得。-4分(1)函数在时有极值,所以,-5分解得,-7分所以-8分(2)因为函数在区间上单调递增,所以导函数在区间上的值恒大于或等于零,-10分则得,所以实数的取值范围为

10、-14分【名师指引】已知在处有极值,等价于。【新题导练】4在区间上的最大值为,则=( )A.B. C. D. 或解析:选B在上的最大值为,且在时,解之或(舍去),选B.5在区间上的最大值是A B0 C2 D4解析,令可得或(2舍去),当时,0,当时,1时,对x(0,+)恒有0, 当a.1时,f(x)在(0,+)上为增函数;5(汕头市金山中学2009届高三上学期11月月考)已知函数f(x)=ax3+3x2x+1,问是否存在实数a,使得f(x)在(0,4)上单调递减?若存在,求出a的范围;若不存在,说明理由。解:(x)=3ax2+6x1. 要使f(x)在0,4递减,则当x(0,4)时,(x)0。或

11、,解得a3.综合拔高训练6(东莞高级中学2009届高三上学期11月教学监控测试)已知函数f(x)=ax3+bx23x在x=1处取得极值. ()求函数f(x)的解析式; ()求证:对于区间1,1上任意两个自变量的值x1,x2,都有|f(x1)f(x2)|4; ()若过点A(1,m)(m2)可作曲线y=f(x)的三条切线,求实数m的取值范围.解:(I)f(x)=3ax2+2bx3,依题意,f(1)=f(1)=0, 即2分 解得a=1,b=0. f(x)=x33x.4分 (II)f(x)=x33x,f(x)=3x23=3(x+1)(x1),当1x1时,f(x)0,故f(x)在区间1,1上为减函数,f

12、max(x)=f(1)=2,fmin(x)=f(1)=26分对于区间1,1上任意两个自变量的值x1,x2,都有|f(x1)f(x2)|fmax(x) fmin(x)|f(x1)f(x2)|fmax(x)fmin(x)|=2(2)=48分 (III)f(x)=3x23=3(x+1)(x1), 曲线方程为y=x33x,点A(1,m)不在曲线上.设切点为M(x0,y0),则点M的坐标满足因,故切线的斜率为,整理得.过点A(1,m)可作曲线的三条切线,关于x0方程=0有三个实根.10分设g(x0)= ,则g(x0)=6,由g(x0)=0,得x0=0或x0=1.g(x0)在(,0),(1,+)上单调递增

13、,在(0,1)上单调递减.函数g(x0)= 的极值点为x0=0,x0=112分关于x0方程=0有三个实根的充要条件是,解得3m2.故所求的实数a的取值范围是3m2.14分7(广东省北江中学2009届高三上学期12月月考 )已知,其中是自然常数,()讨论时, 的单调性、极值;()求证:在()的条件下,;()是否存在实数,使的最小值是3,若存在,求出的值;若不存在,说明理由.解:(), 1分当时,此时单调递减当时,此时单调递增 3分的极小值为 4分()的极小值为1,即在上的最小值为1, , 5分令, 6分当时,在上单调递增 7分 在(1)的条件下, 9分()假设存在实数,使()有最小值3, 9分 当时,在上单调递减,(舍去),所以,此时无最小值. 10分当时,在上单调递减,在上单调递增,满足条件. 11分 当时,在上单调递减,(舍去),所以,此时无最小值.综上,存在实数,使得当时有最小值3. 8(潮南区0809学年度第一学期期末高三级质检)已知函数()(1) 求f(x)的单调区间;(2) 证明:lnx0,f(x)在上递增当时,令得解得:,因(舍去),故在上0,f(x)递增.(2)由(1)知在内递减,在内递增.故,又因故,得

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3