1、攀枝花市第十二中学校2016-2017学年度(上)半期调研检测高2018届 文科数学 试题注意事项:1、本试卷分选择题、填空题和解答题两部分. 2、 全卷满分150分,考试时间120分钟。3、只交答题卷,试题卷学生带走,以备讲评(或说明需要交的试卷)。一、选择题:(每小题5分,12个小题共60分)1某学校礼堂有30排座位,每排有20个座位一次心理讲座时礼堂中坐满了学生,会后为了了解有关情况,留下座位号是15的30名学生这里运用的抽样方法是()A抽签法B随机数法 C系统抽样 D分层抽样甲组乙组9099x616676292如图所示的茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:
2、分),已知甲组数据的中位数为17,则x的值为()A8B7 C6 D93设a,b是实数,则“ab0”是“ab0”的( )A充分不必要条件 B必要不充分条件C充分必要条件 D既不充分也不必要条件4已知椭圆1(m0)的右焦点F(4,0),则m()A2B3 C4 D55双曲线1的离心率为()A2B2 C D16抛物线y=2x2的准线方程是( ) (第7题)A B C D 7阅读如图所示的程序框图,运行相应的程序,输出s的值等于()A3 B10 C0 D28下列说法错误的是()A命题“若x25x60,则x2”的逆否命题是“若x2,则x25x60”B若命题p:存在x0R,xx01b0)的左、右焦点分别为F
3、1,F2,焦距为2c,若直线y(xc)与椭圆的一个交点M满足MF1F22MF2F1,则该椭圆的离心率等于_2018届高二(上)数学(文科)半期考试题答案选择题:CBDBBC ACDBDD 填空题:13:14:15: 16:1三、解答题:(6个小题,共计70分)17 18. 19.解:(1)由(0.0020.009 50.0110.012 5x0.0050.002 5)201,得x0.007 5,直方图中x的值为0.007 5. (2)月平均用电量的众数是230. (0.0020.009 50.011)200.450.5,月平均用电量的中位数在的用户分别有15户、10户、5户,故抽取比为,从月平
4、均用电量在220,240)的用户中应抽取255(户)20解:(1)由题意知,直线AB的斜率k1,中点坐标为(1,2)则直线CD的方程为y2(x1),即xy30.(2)设圆心P(a,b),则由点P在CD上得ab30.又直径|CD|4,|PA|2,(a1)2b240.由解得或圆心P(3,6)或P(5,2)圆P的方程为(x3)2(y6)240或(x5)2(y2)240.21解:(1)由已知条件,可设抛物线的方程为y22px(p0)点P(1,2)在抛物线上,222p1,解得p2.故所求抛物线的方程是y24x,准线方程是x1.(2)设直线PA的斜率为kPA,直线PB的斜率为kPB,则kPA(x11),k
5、PB(x21),PA与PB的斜率存在且倾斜角互补,kPAkPB.由A(x1,y1),B(x2,y2)均在抛物线上,得y4x1,y4x2,y12(y22)y1y24.由得,yy4(x1x2),kAB1(x1x2)22解:(1)设A(x1,y1),B(x2,y2),P(x0,y0),则1,1,1,由此可得1.因为x1x22x0,y1y22y0,所以a22b2.又由题意知,M的右焦点为(,0),故a2b23.因此a26,b23. 所以M的方程为1.(2)由解得或因此|AB|.由题意可设直线CD的方程为yxn,设C(x3,y3),D(x4,y4)由得3x24nx2n260.于是x3,4.因为直线CD的斜率为1,所以|CD|x4x3| .由已知,四边形ACBD的面积S|CD|AB| .当n0时,S取得最大值,最大值为.所以四边形ACBD面积的最大值为.