1、高考资源网第一课时: 3.2立体几何中的向量方法(一)教学要求:向量运算在几何证明与计算中的应用掌握利用向量运算解几何题的方法,并能解简单的立体几何问题教学重点:向量运算在几何证明与计算中的应用教学难点:向量运算在几何证明与计算中的应用教学过程:一、复习引高考资源网入1. 用向量解决立体几何中的一些典型问题的基本思考方法是:如何把已知的几何条件(如线段、角度等)转化为向量表示;考虑一些未知的向量能否用基向量或其他已知向量表式;如何对已经表示出来的向量进行运算,才能获得需要的结论?2. 通法分析:利用两个向量的数量积的定义及其性质可以解决哪些问题呢?利用定义ab|a|b|cosa,b或cosa,
2、b,可求两个向量的数量积或夹角问题;利用性质abab可以解决线段或直线的垂直问题;利用性质aaa2,可以解决线段的长或两点间的距离问题二、例题讲解1. 出示例1:已知空间四边形OABC中,求证:证明: , ,0 2. 出示例2:如图,已知线段AB在平面内,线段,线段BDAB,线段,如果ABa,ACBDb,求C、D间的距离解:由,可知由可知,2() 3. 出示例3:如图,M、N分别是棱长为1的正方体的棱、的中点求异面直线MN与所成的角解:,(), 求得 cos,.4. 小结:利用向量解几何题的一般方法:把线段或角度转化为向量表示式,并用已知向量表示未知向量,然后通过向量的运算去计算或证明三、巩固
3、练习 作业:课本P116 练习 1、2题.第二课时: 3.2立体几何中的向量方法(二)教学要求:向量运算在几何证明与计算中的应用掌握利用向量运算解几何题的方法,并能解简单的立体几何问题教学重点:向量运算在几何证明与计算中的应用教学难点:向量运算在几何证明与计算中的应用教学过程:一、复习引入 讨论:将立体几何问题转化为向量问题的途径?(1)通过一组基向量研究的向量法,它利用向量的概念及其运算解决问题;(2)通过空间直角坐标系研究的坐标法,它通过坐标把向量转化为数及其运算来解决问题. 二、例题讲解1. 出示例1: 如图,在正方体中,E、F分别是、CD的中点,求证:平面ADE证明:不妨设已知正方体的
4、棱长为个单位长度,且设i,j,k以i、j、k为坐标向量建立空间直角坐标系Dxyz,则(-1,0,0),(0,-1),(-1,0,0)(0,-1)0,AD又 (0,1,),(0,1,)(0,-1)0, AE又,平面ADE说明:“不妨设”是我们在解题中常用的小技巧,通常可用于设定某些与题目要求无关的一些数据,以使问题的解决简单化如在立体几何中求角的大小、判定直线与直线或直线与平面的位置关系时,可以约定一些基本的长度空间直角坐标些建立,可以选取任意一点和一个单位正交基底,但具体设置时仍应注意几何体中的点、线、面的特征,把它们放在恰当的位置,才能方便计算和证明2. 出示例2:课本P116 例3 分析:
5、如何转化为向量问题?进行怎样的向量运算?3. 出示例3:课本P118 例4 分析:如何转化为向量问题?进行怎样的向量运算?4. 出示例4:证:如果两条直线同垂直于一个平面,则这两条直线平行改写为:已知:直线OA平面,直线BD平面,O、B为垂足求证:OA/BD证明:以点O为原点,以射线OA为非负z轴,建立空间直角坐标系O-xyz,i,j,k为沿x轴,y轴,z轴的坐标向量,且设BD,i,j,i(1,0,0)x0,j(0,1,0)y0,(0,0,z)zk即/k由已知O、B为两个不同的点,OA/BD5. 法向量定义:如果表示向量a的有向线段所在直线垂直于平面,则称这个向量垂直于平面,记作a如果a,那么
6、向量a叫做平面的法向量6. 小结:向量法解题“三步曲”:(1)化为向量问题 (2)进行向量运算 (3)回到图形问题. 三、巩固练习 作业:课本P120、 习题A组 1、2题.第三课时: 3.2立体几何中的向量方法(三)教学要求:向量运算在几何证明与计算中的应用掌握利用向量运算解几何题的方法,并能解简单的立体几何问题教学重点:向量运算在几何证明与计算中的应用教学难点:向量运算在几何证明与计算中的应用教学过程:一、复习引入1. 法向量定义:如果直线, 取直线l的方向向量为,则向量叫作平面的法向量(normal vectors). 利用法向量,可以巧妙的解决空间角度和距离.2. 讨论:如何利用法向量
7、求线面角? 面面角?直线AB与平面所成的角,可看成是向量所在直线与平面的法向量所在直线夹角的余角,从而求线面角转化为求直线所在的向量与平面的法向量的所成的线线角,根据两个向量所成角的余弦公式,我们可以得到如下向量法的公式:.3. 讨论:如何利用向量求空间距离?两异面直线的距离,转化为与两异面直线都相交的线段在公垂向量上的投影长.点到平面的距离,转化为过这点的平面的斜线在平面的法向量上的投影长. 二、例题讲解:1. 出示例1:长方体中,AD=2,AB=4,E、F分别是、AB的中点,O是的交点. 求直线OF与平面DEF所成角的正弦. 解:以点D为空间直角坐标系的原点,DA、DC、为坐标轴,建立如图所示的空间直角坐标系. 则.设平面DEF的法向量为 , 则 , 而, . ,即, 解得, . , 而. 所以,直线OF与平面DEF所成角的正弦为.2. 变式: 用向量法求:二面角余弦;OF与DE的距离;O点到平面DEF的距离. 三、巩固练习 作业:课本P121、 习题A组 5、6题.