ImageVerifierCode 换一换
格式:DOC , 页数:11 ,大小:169KB ,
资源ID:206785      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-206785-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2018版高三新课标版&数学(理)总复习题组层级快练61 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2018版高三新课标版&数学(理)总复习题组层级快练61 WORD版含解析.doc

1、题组层级快练(六十一)1若椭圆1过点(2,),则其焦距为()A2B2C4 D4答案D解析椭圆过(2,),则有1,b24,c216412,c2,2c4.故选D.2已知椭圆1(ab0)的焦点分别为F1,F2,b4,离心率为.过F1的直线交椭圆于A,B两点,则ABF2的周长为()A10 B12C16 D20答案D解析如图,由椭圆的定义知ABF2的周长为4a,又e,即ca,a2c2a2b216.a5,ABF2的周长为20.3已知焦点在x轴上的椭圆的离心率为,且它的长轴长等于圆C:x2y22x150的半径,则椭圆的标准方程是()A.1 B.1C.y21 D.1答案A解析圆C的方程可化为(x1)2y216

2、.知其半径r4,长轴长2a4,a2.又e,c1,b2a2c2413.椭圆的标准方程为1.4已知曲线C上的动点M(x,y),向量a(x2,y)和b(x2,y)满足|a|b|6,则曲线C的离心率是()A. B.C. D.答案A解析因为|a|b|6表示动点M(x,y)到两点(2,0)和(2,0)距离的和为6,所以曲线C是椭圆且长轴长2a6,即a3.又c2,e.5已知椭圆1的离心率e,则m的值为()A3 B3或C. D.或答案B解析若焦点在x轴上,则有m3.若焦点在y轴上,则有m.6已知圆(x2)2y236的圆心为M,设A为圆上任一点,N(2,0),线段AN的垂直平分线交MA于点P,则动点P的轨迹是(

3、)A圆 B椭圆C双曲线 D抛物线答案B解析点P在线段AN的垂直平分线上,故|PA|PN|.又AM是圆的半径,|PM|PN|PM|PA|AM|6|MN|.由椭圆的定义知,P的轨迹是椭圆7(2017河北邯郸一模)已知P是椭圆1(0bb0),因为椭圆上任意一点到两焦点的距离之和为10,所以根据椭圆的定义可得2a10a5,则c4,e,故选B.10设F1,F2为椭圆的两个焦点,以F2为圆心作圆,已知圆F2经过椭圆的中心,且与椭圆相交于点M,若直线MF1恰与圆F2相切,则该椭圆的离心率为()A.1 B2C. D.答案A解析由题意知F1MF2,|MF2|c,|F1M|2ac,则c2(2ac)24c2,e22

4、e20,解得e1.11(2017北京丰台期末)若F(c,0)为椭圆C:1(ab0)的右焦点,椭圆C与直线1交于A,B两点,线段AB的中点在直线xc上,则椭圆的离心率为()A. B.C. D.答案B解析因为直线1在x,y轴上的截距分别为a,b,所以A(a,0),B(0,b)又线段AB的中点在直线xc上,所以c,即e.12(2017浙江金丽衢十二校联考)已知F1,F2分别是椭圆C:1(ab0)的左、右焦点若椭圆C上存在点P,使得线段PF1的中垂线恰好经过焦点F2,则椭圆C的离心率的取值范围是()A,1) B,C,1) D(0,答案C解析设P(x,y),则|PF2|aex,若椭圆C上存在点P,使得线

5、段PF1的中垂线恰好经过焦点F2,则|PF2|F1F2|,aex2c,x.axa,a,e0),则半径为4a,则(4a)2a222,解得a,故圆的方程为(x)2y2.15(2016课标全国)已知O为坐标原点,F是椭圆C:1(ab0)的左焦点,A,B分别为C的左、右顶点P为C上一点,且PFx轴过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为_答案解析设E(0,m),则直线AE的方程为1,由题意可知M(c,m),(0,)和B(a,0)三点共线,则,化简得a3c,则C的离心率e.16.如图,已知椭圆1(ab0),F1,F2分别为椭圆的左、右焦点,A为椭圆的上顶

6、点,直线AF2交椭圆于另一点B.(1)若F1AB90,求椭圆的离心率;(2)若椭圆的焦距为2,且2,求椭圆的方程答案(1)(2)1解析(1)若F1AB90,则AOF2为等腰直角三角形所以有|OA|OF2|,即bc.所以ac,e.(2)由题知A(0,b),F2(1,0),设B(x,y),由2,解得x,y.代入1,得1.即1,解得a23.所以椭圆方程为1.17(2014新课标全国)设F1,F2分别是椭圆C:1(ab0)的左、右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|5|F1N|,求a

7、,b.答案(1)(2)a7,b2解析(1)根据c及题设知M,2b23ac.将b2a2c2代入2b23ac,解得,2(舍去)故C的离心率为.(2)由题意,原点O为F1F2的中点,MF2y轴,所以直线MF1与y轴的交点D(0,2)是线段MF1的中点故4,即b24a.由|MN|5|F1N|,得|DF1|2|F1N|.设N(x1,y1),由题意知y1b0)的左、右焦点分别为F1,F2,离心率为,过F2的直线l交C于A,B两点,若AF1B的周长为4,则C的方程为()A.1B.y21C.1 D.1答案A解析利用椭圆的定义及性质列式求解由e,得.又AF1B的周长为4,由椭圆定义,得4a4,得a,代入得c1,

8、b2a2c22,故C的方程为1.3若椭圆1的离心率为,则k的值为()A21B21C或21 D.或21答案C解析若a29,b24k,则c.由,即,得k;若a24k,b29,则c.由,即,解得k21.4若椭圆x2my21的焦点在y轴上,且长轴长是短轴长的两倍则m的值为()A. B.C2 D4答案A解析将原方程变形为x21.由题意知a2,b21,a,b1.2,m.5(2016北京海淀期末练习)已知椭圆C:1的左、右焦点分别为F1,F2,椭圆C上的点A满足AF2F1F2,若点P是椭圆C上的动点,则的最大值为()A. B.C. D.答案B解析由椭圆方程知c1,所以F1(1,0),F2(1,0)因为椭圆C

9、上点A满足AF2F1F2,则可设A(1,y0),代入椭圆方程可得y02,所以y0.设P(x1,y1),则(x11,y1),(0,y0),所以y1y0.因为点P是椭圆C上的动点,所以y1,的最大值为.故B正确6如图,已知椭圆C:1(ab0),其中左焦点为F(2,0),P为C上一点,满足|OP|OF|,且|PF|4,则椭圆C的方程为()A.1 B.1C.1 D.1答案B解析设椭圆的焦距为2c,右焦点为F1,连接PF1,如图所示由F(2,0),得c2.由|OP|OF|OF1|,知PF1PF.在RtPFF1中,由勾股定理,得|PF1|8.由椭圆定义,得|PF1|PF|2a4812,从而a6,得a236

10、,于是b2a2c236(2)216,所以椭圆C的方程为1.7(2017贵州兴义第八中学第四次月考)设斜率为的直线l与椭圆1(ab0)交于不同的两点,且这两个交点在x轴上的射影恰好是椭圆的两个焦点,则该椭圆的离心率为()A. B.C. D.答案C解析由题意知,直线l与椭圆1(ab0)两个交点的横坐标是c,c,所以两个交点分别为(c,c),(c,c),代入椭圆得1,两边同乘2a2b2,则c2(2b2a2)2a2b2.因为b2a2c2,所以c2(3a22c2)2a42a2c2,所以2或.又因为0eb0)的左、右焦点分别为F1,F2,过F2的直线与椭圆交于A,B两点,若F1AB是以A为直角顶点的等腰直

11、角三角形,则椭圆的离心率为()A. B2C.2 D.答案D解析设|F1F2|2c,|AF1|m,若ABF1是以A为直角顶点的等腰直角三角形,则|AB|AF1|m,|BF1|m.由椭圆的定义可得ABF1的周长为4a,即有4a2mm,即m(42)a,则|AF2|2am(22)a,在RtAF1F2中,|F1F2|2|AF1|2|AF2|2,即4c24(2)2a24(1)2a2,即有c2(96)a2,即c(a,即e,故选D.9(2013辽宁)已知椭圆C:1(ab0)的左焦点F,C与过原点的直线相交于A,B两点,连接AF,BF.若|AB|10,|AF|6,cosABF,则C的离心率e_答案解析如图所示根

12、据余弦定理|AF|2|BF|2|AB|22|AB|BF|cosABF,即|BF|216|BF|640,得|BF|8.又|OF|2|BF|2|OB|22|OB|BF|cosABF,得|OF|5.根据椭圆的对称性|AF|BF|2a14,得a7.又|OF|c5,故离心率e.10(2017山西协作体)若椭圆C:1(ab0)的左、右焦点与短轴的两个顶点组成一个面积为1的正方形,则椭圆C的内接正方形的面积为_答案解析由已知得,a1,bc,所以椭圆C的方程为x21,设A(x0,y0)是椭圆C的内接正方形位于第一象限内的顶点,则x0y0,所以1x022y023x02,解得x02,所以椭圆C的内接正方形的面积S(2x0)24x02.11已知P是椭圆1上的一点,求点P到点M(m,0)(m0)的距离的最小值答案0m1时,|PM|minm1时,|PM|min|m2|解析设P(x,y),则x,y满足1,y22,2x2,|PM|.若02m2,即0m1时,x2m时,函数(x2m)22m2取最小值2m2,此时|PM|的最小值为.若2m2,即m1时,二次函数(x2m)2m22在2,2上单调递减,当x2时,函数(x2m)22m2取最小值(m2)2.此时|PM|的最小值为|m2|.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3