1、高考资源网() 您身边的高考专家数学高考资源网 数学能力训练(24)高考资源网1.已知函数f(x)cos2sinsin,求函数f(x)在区间上的最大值与最小值.解由题意,得f(x)cos2sinsincos 2xsin 2x(sin xcos x)(sin xcos x)cos 2xsin 2xsin2xcos2xcos 2xsin 2xcos 2xsin,又x,所以2x.又f(x)sin在区间上单调递增,在区间上单调递减,所以当x时,f(x)取得最大值1.又ff,所以当x时,f(x)取得最小值.故函数f(x)在区间上的最大值与最小值分别为1与.2.已知函数f(x)2sin,xR. (1)求f
2、的值;(2)设,f,f(32),求cos()的值.(1)(2)3.设函数f(x)cossin2x. (1)求函数f(x)的最大值;(2)设A,B,C为ABC的三个内角,若cos B,f ,且C为锐角,求sin A.解(1)f(x)cos 2xcos sin 2xsin cos 2xsin 2xcos 2xsin 2x.所以,当2x2k,kZ,即xk (kZ)时,f(x)取得最大值,f(x)max.(2)由 f ,即sin C,解得sin C,又C为锐角,所以C.由cos B求得sin B.因此sin Asin(BC)sin(BC)sin Bcos Ccos Bsin C.4.已知0,cos, sin,求sin()的值解cossin,0,0,A,cos A3sin A,又sin2Acos2A1,sin A,cos A,由cos B,得sin B.cos(AB)cos Acos Bsin Asin B.故cos Ccos(AB)cos(AB).高考资源网答案:高考资源网高考资源网版权所有,侵权必究!