ImageVerifierCode 换一换
格式:DOC , 页数:16 ,大小:327.50KB ,
资源ID:198540      下载积分:9 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-198540-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2021届高三新高考数学人教A版一轮复习教学案:第一章第3节 简单的逻辑联结词、全称量词与存在量词 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2021届高三新高考数学人教A版一轮复习教学案:第一章第3节 简单的逻辑联结词、全称量词与存在量词 WORD版含解析.doc

1、第3节简单的逻辑联结词、全称量词与存在量词考试要求1.了解逻辑联结词“或”、“且”、“非”的含义;2.理解全称量词与存在量词的意义;3.能正确地对含有一个量词的命题进行否定.知 识 梳 理1.简单的逻辑联结词(1)命题中的且、或、非叫做逻辑联结词.(2)命题pq,pq,綈p的真假判断pqpqpq綈p真真真真假真假假真假假真假真真假假假假真2.全称量词与存在量词(1)全称量词:短语“所有的”、“任意一个”等在逻辑中通常叫做全称量词,用符号“”表示.(2)存在量词:短语“存在一个”、“至少有一个”等在逻辑中通常叫做存在量词,用符号“”表示.3.全称命题和特称命题名称全称命题特称命题结构对M中的任意

2、一个x,有p(x)成立存在M中的一个x0,使p(x0)成立简记xM,p(x)x0M,p(x0)否定x0M,綈p(x0)xM,綈p(x)常用结论与微点提醒1.含有逻辑联结词的命题真假判断口诀:pq见真即真,pq见假即假,p与綈p真假相反.2.含有一个量词的命题的否定规律是“改量词,否结论”.3.“pq”的否定是“(綈p)(綈q)”,“pq”的否定是“(綈p)(綈q)”.4.逻辑联结词“或”“且”“非”对应集合运算中的“并”“交”“补”,可借助集合运算处理含逻辑联结词的命题.诊 断 自 测1.判断下列结论正误(在括号内打“”或“”)(1)命题“56或52”是假命题.()(2)命题綈(pq)是假命题

3、,则命题p,q中至少有一个是真命题.()(3)“长方形的对角线相等”是特称命题.()(4)x0M,p(x0)与xM,綈p(x)的真假性相反.()解析(1)错误.命题pq中,p,q有一真则真.(2)错误.pq是真命题,则p,q都是真命题.(3)错误.命题“长方形的对角线相等”是全称命题.答案(1)(2)(3)(4)2.(老教材选修21P18A1(3)改编)已知p:2是偶数,q:2是质数,则命题綈p,綈q,pq,pq中真命题的个数为()A.1 B.2 C.3 D.4解析p和q显然都是真命题,所以綈p,綈q都是假命题,pq,pq都是真命题.答案B3.(新教材必修第一册P29习题1.5T3(3)改编)

4、命题“表面积相等的三棱锥体积也相等”的否定是_.答案有些表面积相等的三棱锥体积不相等4.(2020成都诊断)已知命题p:x0R,x4x060C.xR,x24x60 D.xR,x24x60解析依据特称命题的否定是全称命题,由此知答案A是正确的.答案A5.(2020唐山模拟)已知命题p:f(x)x3ax的图象关于原点对称;命题q:g(x)xcos x的图象关于y轴对称.则下列命题为真命题的是()A.綈p B.qC.pq D.p(綈q)解析根据题意,对于f(x)x3ax,有f(x)(x)3a(x)(x3ax)f(x),为奇函数,其图象关于原点对称,p为真命题;对于g(x)xcos x,有g(x)(x

5、)cos(x)xcos x,为奇函数,其图象关于原点对称,q为假命题,则綈p为假命题,q为假命题,pq为假命题,p(綈q)为真命题.答案D6.(2019豫南五校联考)若“x,mtan x2”为真命题,则实数m的最大值为_.解析由x,1tan x22.“x,mtan x2”为真命题,则m1.实数m的最大值为1.答案1考点一含有逻辑联结词的命题的真假判断【例1】 (1)设a,b,c是非零向量.已知命题p: 若ab0,bc0,则ac0;命题q:若ab,bc,则ac.则下列命题中真命题是()A.pq B.pqC.(綈p)(綈q) D.p(綈q)(2)(2020济南调研)已知命题p:若a|b|,则a2b

6、2;命题q:m,n是直线,为平面,若m,n,则mn.下列命题为真命题的是()A.pq B.p(綈q)C.(綈p)q D.(綈p)(綈q)解析(1)取ac(1,0),b(0,1),显然ab0,bc0,但ac10,p是假命题.又a,b,c是非零向量,由ab知axb(xR),由bc知byc(yR),axyc,ac,q是真命题.综上知pq是真命题,pq是假命题.綈p为真命题,綈q为假命题.(綈p)(綈q),p(綈q)都是假命题.(2)对于命题p,由a|b|两边平方,可得到a2b2,故命题p为真命题.对于命题q,直线m,但是m,n有可能是异面直线,故命题q为假命题,綈q为真命题.所以p(綈q)为真命题.

7、答案(1)A(2)B规律方法1.“pq”、“pq”、“綈p”形式命题真假的判断关键是对逻辑联结词“或”“且”“非”含义的理解,其操作步骤是:(1)明确其构成形式;(2)判断其中命题p,q的真假;(3)确定“pq”“pq”“綈p”形式命题的真假.2.pq形式是“一假必假,全真才真”,pq形式是“一真必真,全假才假”,綈p则是“与p的真假相反”.【训练1】 (1)若命题“pq”与命题“綈p”都是真命题,则()A.命题p与命题q都是真命题B.命题p与命题q都是假命题C.命题p是真命题,命题q是假命题D.命题p是假命题,命题q是真命题(2)(2020衡水中学检测)命题p:若向量ab0,则a与b的夹角为

8、钝角;命题q:若cos cos 1,则sin()0.下列命题为真命题的是()A.p B.綈q C.pq D.pq解析(1)因为綈p为真命题,所以p为假命题,又pq为真命题,所以q为真命题.(2)当a,b方向相反时,ab0,但夹角是180,不是钝角,命题p是假命题;若cos cos 1,则cos cos 1或cos cos 1,所以sin sin 0,从而sin()0,命题q是真命题,所以pq是真命题.答案(1)D(2)D考点二全称量词与存在量词多维探究角度1含有量词命题的否定【例21】 (2020河南八所重点高中联考)已知集合A是奇函数集,B是偶函数集.若命题p:f(x)A,|f(x)|B,则

9、綈p为()A.f(x)A,|f(x)|B B.f(x)A,|f(x)|BC.f(x)A,|f(x)|B D.f(x)A,|f(x)|B解析全称命题的否定为特称命题:改写量词,否定结论.綈p:f(x)A,|f(x)|B.答案C角度2全称(特称)命题的真假判断【例22】 (1)已知定义域为R的函数f(x)不是偶函数,则下列命题一定为真命题的是()A.xR,f(x)f(x)B.xR,f(x)f(x)C.x0R,f(x0)f(x0)D.x0R,f(x0)f(x0)(2)(2020衡水检测)已知命题p:xN*,命题q:xR,2x21x2,则下列命题中是真命题的是()A.pq B.(綈p)qC.p(綈q)

10、 D.(綈p)(綈q)解析(1)定义域为R的函数f(x)不是偶函数,xR,f(x)f(x)为假命题,x0R,f(x0)f(x0)为真命题.(2)因为yxn(nN*)在(0,)上递增.xN*,成立,p为真命题.又2x21x22,当且仅当2x21x,即x时,上式取等号,则q为真命题.因此pq为真命题.答案(1)C(2)A规律方法1.全称命题与特称命题的否定与命题的否定有一定的区别,否定全称命题和特称命题时,一是要改写量词,全称量词改写为存在量词,存在量词改写为全称量词;二是要否定结论,而一般命题的否定只需直接否定结论.2.判定全称命题“xM,p(x)”是真命题,需要对集合M中的每一个元素x,证明p

11、(x)成立;要判断特称命题是真命题,只要在限定集合内找到一个xx0,使p(x0)成立即可.【训练2】 (1)(角度1)命题“x0R,1f(x0)2”的否定形式是()A.xR,1f(x)2B.x0R,12D.xR,f(x)1或f(x)2(2)(角度2)(2020株洲模拟)已知命题p:x0,exx1,命题q:x(0,),ln xx,则下列命题正确的是()A.pq B.(綈p)qC.p(綈q) D.(綈p)(綈q)解析(1)特称命题的否定是全称命题,原命题的否定形式为“xR,f(x)1或f(x)2”.(2)令f(x)exx1,则f(x)ex1,当x0时,f(x)0,所以f(x)在(0,)上单调递增,

12、f(x)f(0)0,即exx1,命题p真;令g(x)ln xx,x0,则g(x)1,当x(0,1)时,g(x)0;当x(1,)时,g(x)0,即当x1时,g(x)取得极大值,也是最大值,所以g(x)maxg(1)10,g(x)0在(0,)上恒成立,则命题q假,因此綈q为真,故p(綈q)为真.答案(1)D(2)C考点三由命题的真假求参数典例迁移【例3】 (1)已知命题p:“x0,1,aex”;命题q:“x0R,使得x4x0a0”.若命题“pq”是真命题,则实数a的取值范围为_.(2)(经典母题)已知f(x)ln(x21),g(x)m,若对x10,3,x21,2,使得f(x1)g(x2),则实数m

13、的取值范围是_.解析(1)若命题“pq”是真命题,那么命题p,q都是真命题.由x0,1,aex,得ae;由x0R,使x4x0a0,得164a0,则a4,因此ea4.则实数a的取值范围为e,4.(2)当x0,3时,f(x)minf(0)0,当x1,2时,g(x)ming(2)m,由f(x)ming(x)min,得0m,所以m.答案(1)e,4(2)【迁移】 本例(2)中,若将“x21,2”改为“x21,2”,其他条件不变,则实数m的取值范围是_.解析当x1,2时,g(x)maxg(1)m,对x10,3,x21,2使得f(x1)g(x2)等价于f(x)ming(x)max,得0m,m.答案规律方法

14、1.由含逻辑联结词的命题真假求参数的方法步骤:(1)求出每个命题是真命题时参数的取值范围;(2)根据每个命题的真假情况,求出参数的取值范围.2.全称命题可转化为恒成立问题.3.含量词的命题中参数的取值范围,可根据命题的含义,利用函数的最值解决.【训练3】 已知命题p:xR,2x3x,命题q:xR,x22x,若命题(綈p)q为真命题,则x的值为()A.1 B.1 C.2 D.2解析因为綈p:xR,2x3x,要使(綈p)q为真,所以綈p与q同时为真.由2x3x,得1,所以x0.由x22x,得x1或x2.由知x2.答案D逻辑推理突破双变量“存在性或任意性”问题逻辑推理的关键要素是:逻辑的起点、推理的

15、形式、结论的表达.解决双变量“存在性或任意性”问题关键就是将含有全称量词和存在量词的条件“等价转化”为两个函数值域之间的关系(或两个函数最值之间的关系),目的在于培养学生的逻辑推理素养和良好的数学思维品质.类型1形如“对任意x1A,都存在x2B,使得g(x2)f(x1)成立”的问题【例1】 已知函数f(x)x3(1a)x2a(a2)x,g(x)x,若对任意x11,1,总存在x20,2,使得f(x1)2ax1g(x2)成立,求实数a的取值范围.解由题意知,g(x)在0,2上的值域为.令h(x)f(x)2ax3x22xa(a2),则h(x)6x2,由h(x)0得x.当x时,h(x)0,所以h(x)

16、minha22a.又由题意可知,h(x)的值域是的子集,所以解得实数a的取值范围是2,0.思维升华理解全称量词与存在量词的含义是求解本题的关键,此类问题求解的策略是“等价转化”,即“函数f(x)的值域是g(x)的值域的子集”,从而利用包含关系构建关于a的不等式组,求得参数的取值范围.类型2形如“存在x1A及x2B,使得f(x1)g(x2)成立”的问题【例2】 已知函数f(x)函数g(x)ksin2k2(k0),若存在x10,1及x20,1,使得f(x1)g(x2)成立,求实数k的取值范围.解由题意,易得函数f(x)的值域为0,1,g(x)的值域为,并且两个值域有公共部分.先求没有公共部分的情况

17、,即22k1或2k0,解得k,所以,要使两个值域有公共部分,k的取值范围是.思维升华本类问题的实质是“两函数f(x)与g(x)的值域的交集不为空集”,上述解法的关键是利用了补集思想.另外,若把此种类型中的两个“存在”均改为“任意”,则“等价转化”策略是利用“f(x)的值域和g(x)的值域相等”来求解参数的取值范围.类型3形如“对任意x1A,都存在x2B,使得f(x1)1,x210”,则綈p为()A.x1,x210 B.x1,x210C.x01,x10 D.x01,x10解析命题p:“x1,x210”,则綈p为:x01,x10.答案C2.第32届夏季奥林匹克运动会将于2020年7月24日在日本东

18、京隆重开幕.在体操预赛中,有甲、乙两位队员参加.设命题p是“甲落地站稳”,q是“乙落地站稳”,则命题“至少有一位队员落地没有站稳”可表示为()A.(綈p)(綈q) B.p(綈q)C.(綈p)(綈q) D.pq解析命题“至少有一位队员落地没有站稳”包含以下三种情况:“甲、乙落地均没有站稳”、“甲落地没站稳,乙落地站稳”、“乙落地没有站稳,甲落地站稳”,故可表示为(綈p)(綈q).或者,命题“至少有一位队员落地没有站稳”等价于命题“甲、乙均落地站稳”的否定,即“pq”的否定,选A.答案A3.命题“nN*,f(n)N*且f(n)n”的否定形式是()A.nN*,f(n)N*且f(n)nB.nN*,f(

19、n)N*或f(n)nC.n0N*,f(n0)N*且f(n0)n0D.n0N*,f(n0)N*或f(n0)n0解析全称命题的否定为特称命题,该命题的否定是:n0N*,f(n0)N*或f(n0)n0.答案D4.已知命题p:xR,x2x10;命题q:若a2b2,则a0恒成立,所以p为真命题,则綈p为假命题;当a1,b2时,满足a2b2,但不满足ax2,q:“ab4”是“a2,b2”的充分不必要条件,则下列命题为真命题的是()A.pq B.(綈p)qC.p(綈q) D.(綈p)(綈q)解析当x2时,2xx2,所以p是假命题;由a2,b2可以推出ab4;反之不成立,例如a2,b4,所以“ab4”是“a2

20、,b2”的必要不充分条件,故q是假命题;所以(綈p)(綈q)是真命题.答案D6.已知命题“xR,4x2(a2)x0”是假命题,则实数a的取值范围为()A.(,0) B.0,4C.4,) D.(0,4)解析因为命题“xR,4x2(a2)x0”是假命题,所以其否定命题“xR,4x2(a2)x0”是真命题.则(a2)244a24a0,解得0a0,得3x11,所以01,所以函数y的值域为(0,1),故命题q为真命题.所以pq为假命题,pq为真命题,p(綈q)为假命题,綈q为假命题.答案B8.已知函数f(x)a2x2a1.若命题“x(0,1),f(x)0”是假命题,则实数a的取值范围是()A. B.(1

21、,)C. D.(1,)解析函数f(x)a2x2a1,命题“x(0,1),f(x)0”是假命题,原命题的否定:“x0(0,1),使f(x0)0”是真命题,f(1)f(0)0,即(a22a1)(2a1)0,解得a,且a1,实数a的取值范围是(1,).答案D二、填空题9.若“x,tan xm”是真命题,则实数m的最小值为_.解析函数ytan x在上是增函数,ymaxtan 1,依题意,mymax,即m1.m的最小值为1.答案110.命题p的否定是“对所有正数x,x1”,则命题p可写为_.解析因为p是綈p的否定,所以只需将全称量词变为存在量词,再对结论否定即可.答案x0(0,),x0111.(2020

22、湖南百校大联考改编)下列四个命题:p1:任意xR,2x0;p2:存在xR,x2x10;p3:任意xR,sin xx2x1.其中是真命题的为_.解析xR,2x0恒成立,p1是真命题.又x2x10,p2是假命题.由sin12,知p3是假命题.取x时,coscos,但x2x10恒成立.若pq为假命题,则实数m的取值范围为_.解析由命题p:x0R,(m1)(x1)0可得m1;由命题q:xR,x2mx10恒成立,即m240,可得2m2,若pq为真命题,则21.答案(,2(1,)B级能力提升13.命题“xR,nN*,使得nx2”的否定形式是()A.xR,nN*,使得nx2B.xR,nN*,使得nx2C.x

23、R,nN*,使得nx2D.x0R,nN*,使得nx解析改变量词,否定结论.该命题的否定应为:x0R,nN*,使得nsin x,则命题pq为真C.命题“x0R,xx010”的否定是“xR,x2x11,命题p是假命题.命题q:当x0时,xsin x,命题q是假命题,则命题pq为假.B选项错误.选项C,命题“x0R,xx010,当m0时,mx20,所以命题p为假命题;当m时,因为f(1)31,所以ff(1)f0,所以命题q为真命题;逐项检验可知,只有(綈p)q为真命题.答案16.(2020漳州八校联考)设p:函数f(x)的定义域为R,q:x(0,1),使得不等式3x9xa6.由命题“pq”为真命题,

24、“pq”为假命题,可知p,q一真一假,当p真q假时,a不存在;当p假q真时,6a1,所以实数a的取值范围是(6,1).答案(6,1)C级创新猜想17.(组合选择题)(2019全国卷)记不等式组表示的平面区域为D.命题p:(x,y)D,2xy9;命题q:(x,y)D,2xy12.下面给出了四个命题pq綈pqp綈q綈p綈q这四个命题中,所有真命题的编号是()A. B. C. D.解析由不等式组画出平面区域D,如图阴影部分所示,在图中画出直线2xy9,可知命题p正确,作出直线2xy12,2xy12表示直线及其下方区域,易知命题q错误.綈p为假,綈q为真,pq为真,綈pq为假,p綈q为真,綈p綈q为假.故真命题的编号为.答案A

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3