1、七年级数学上册第三章整式及其加减章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、小王利用计算机设计了一个程序,输入和输出的数据如下表:输入12345输出那么,当输入数据8时,输出的数据是()ABC
2、D2、与的5倍的差()ABCD3、把多项式合并同类项后所得的结果是()A二次三项式B二次二项式C一次二项式D单项式4、下列各正方形中的四个数之间都有相同的规律,根据此规律,x的值为()A135B153C170D1895、下列是按一定规律排列的多项式:x+y,x2+2y,x3+3y,x4+4y,x5+5y,x6+6y,则第n个多项式是()A(1)nxn+nyB1nxn+nyC(1)n+1xn+nyD(1)nxn+(1)nny6、下列各式:mn,m,8,x2+2x+6,y35y+中,整式有()A3个B4个C6个D7个7、化简的结果是()ABCD8、下列说法中正确的有()个的系数是7;与没有系数;的
3、次数是5;的系数是;的次数是;的系数是A0B1C2D39、已知,则代数式的值为()A0B1CD10、如图是一张长方形的拼图卡片,它被分割成4个大小不同的正方形和一个长方形,若要计算整张卡片的周长,则只需知道其中一个正方形的边长即可,这个正方形的编号是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、数书九章中的秦九韶算法是我国南宋时期的数学家秦九提出的一种多项式简化算法,现在利用计算机解决多项式的求值问题时,秦九韶算法依然是最优的算法例如,计算“当时,多项式的值”,按照秦九韶算法,可先将多项式进行改写:按改写后的方式计算,它一共做了3次乘法,3次加法,与直接计
4、算相比节省了乘法的次数,使计算量减少,计算当时,多项式的值为1008请参考上述方法,将多项式改写为_当时,这个多项式的值为_2、已知单项式与是同类项,则_3、图形是用等长的木棒搭成的,请观察填表:三角形个数1234n需木棒总数35当三角形的个数是n时,需木棒的总数是_4、若,a,b互为倒数,则的值是_5、若,则的值为_.三、解答题(5小题,每小题10分,共计50分)1、小刘、小张两位同学玩数学游戏,小刘说“任意选定一个数,然后按下列步骤进行计算:加上20,乘2,减去4,除以2,再减去你所选定的数”,小张说“不用算了,无论我选什么数,结果总是18”,小张说得对吗?说明理由2、先化简,再求值:,其
5、中3、先化简,再求值:,其中,4、【观察思考】如图,五边形ABCDE内部有若干个点,用这些点以及五边形ABCDE的顶点ABCDE把原五边形分割成一些三角形(互相不重叠)【规律总结】(1)填写下表:五边形ABCDE内点的个数1234n分割成的三角形的个数579(2)【问题解决】原五边形能否被分割成2022个三角形?若能,求此时五边形ABCDE内部有多少个点;若不能,请说明理由5、分别写出下列各项的系数与次数(1);(2);(3);(4)-参考答案-一、单选题1、C【解析】【分析】根据图表找出输出数字的规律:输出的数字中,分子就是输入的数,分母是输入的数字的平方加1,直接将输入数据代入即可求解【详
6、解】解:根据表中数据可得:输出数据的规律为,当输入数据为8时,输出的数据为=.故答案选:C.【考点】本题考查的知识点是有理数的混合运算及列代数式,解题的关键是找到规律列出相应代数式2、C【解析】【分析】先根据题意列出代数式,然后去括号,合并同类项,即可求解【详解】解:根据题意得: 故选:C【考点】本题主要考查了列代数式,整式的加减运算,明确题意,准确列出代数式是解题的关键3、B【解析】【分析】先进行合并同类项,再判断多项式的次数与项数即可【详解】最高次为2,项数为2,即为二次二项式故选B【考点】本题考查了多项式的次数与项数,合并同类项,掌握多项式的系数与次数是解题的关键4、C【解析】【分析】由
7、观察发现每个正方形内有:可求解,从而得到,再利用之间的关系求解即可【详解】解:由观察分析:每个正方形内有: 由观察发现: 又每个正方形内有: 故选C【考点】本题考查的是数字类的规律题,掌握由观察,发现,总结,再利用规律是解题的关键5、A【解析】【分析】从三方面(符号、系数的绝对值、指数)总结规律,再根据规律进行解答便可【详解】解:按一定规律排列的多项式:x+y,x2+2y,x3+3y,x4+4y,x5+5y,x6+6y,则第n个多项式是:(1)nxn+ny,故选:A【考点】本题考查的是整式中的多项式的规律探究,掌握探究的方法是解题的关键6、C【解析】【分析】根据整式的定义,结合题意即可得出答案
8、【详解】解:在mn,m,8,x2+2x+6,y35y+中,整式有mn,m,8, x2+2x+6,一共6个故选:C【考点】本题主要考查了整式的定义,注意分式与整式的区别在于分母中是否含有未知数整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母单项式和多项式统称为整式7、D【解析】【分析】根据去括号的方法计算即可【详解】解:(abc)abc故选D【考点】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“”,去括号后,括号里的各项都不改变符号;括号前是“”,去括号后,括号里的各项都改变符号运用这一法则去掉括号8
9、、B【解析】【分析】根据单项式的次数和系数概念,逐一判断各个选项即可【详解】解:的系数是-7,故原说法错误;与系数分别是:-1,1,故原说法错误;的次数是6,故原说法错误;的系数是,故原说法正确;的次数是,故原说法错误;的系数是,故原说法错误故选B【考点】本题主要考查单项式的相关概念,掌握单项式的次数和系数定义是解题的关键9、B【解析】【分析】把代入代数式,求出算式的值为多少即可【详解】解:,故选B【考点】本题考查了代数式的求值:求代数式的值可以直接代入、计算如果给出的代数式可以化简,要先化简再求值10、C【解析】【分析】设正方形的边长为x,正方形的边长为y,再表示出正方形的边长为xy,正方形
10、的边长为x+y,长方形的长为y+x+yx+2y,则可计算出整张卡片的周长为8x,从而可判断只需知道哪个正方形的边长【详解】解:设正方形的边长为x,正方形的边长为y,则正方形的边长为xy,正方形的边长为x+y,长方形的长为y+x+yx+2y,所以整张卡片的周长2(xy+x)+2(xy+x+2y)4x2y+2x2y+2x+4y8x,所以只需知道正方形的边长即可故选:C【考点】本题主要考查了整式加减应用,准确分析计算是解题的关键二、填空题1、 【解析】【分析】根据题意将变形,再将代入求值即可【详解】解:由题意得,当时,原式,故答案为:【考点】本题考查了整式的运算和代数式的求值,准确理解题意是解题的关
11、键2、3【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同),求出m,n的值,再代入代数式计算即可【详解】解:单项式与是同类项,2m=4,n+2=-2m+7,解得:m=2,n=1,则m+n=2+1=3故答案是:3【考点】本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点3、2n+1【解析】【分析】根据已知的数据可得,即可得解;【详解】,当三角形的个数是n时,需木棒的总数是2n+1故答案是:2n+1【考点】本题主要考查了图形规律题,准确分析计算是解题的关键4、7【解析】【分析】根据a,b互为倒数,可得ab=1;然后把,ab=1代入,计算即可【详解】解:
12、a,b互为倒数,ab=1,又,=4+51=2+5=7故答案为7【考点】本题考查代数式求值、倒数的概念、整体代入的思想,解题的关键是要明确:互为倒数的两个数的乘积是15、-3【解析】【分析】先根据绝对值的性质得出a,b的值,再把a,b代入即可解答【详解】1-a=0,b-2=0a=1,b=2将a=1,b=2,代入得51 -2=-3【考点】此题考查绝对值的性质,合并同类项,解题关键在于求出a,b的值三、解答题1、正确【解析】【分析】设此整数是a,再根据题意列出式子进行计算即可.【详解】正确,理由如下:设此整数是,由题意得a=a+20-2=18,所以说小张说的对.【考点】本题考查了整式的加减,熟知整式
13、的加减实质上就是合并同类项是解答此题的关键2、,【解析】【分析】先去括号、合并同类项,再将未知数的值代入计算【详解】解: =,当时,原式=【考点】此题考查了整式加减法的化简求值,正确掌握整式加减法计算法则是解题的关键3、;【解析】【分析】先化简,后代入求值即可【详解】=,当,时,=【考点】本题考查了整式的化简求值,熟练掌握整式化简求值的基本思路是解题的关键4、 (1)11,2n+3;(2)不能,理由见解析【解析】【分析】(1)根据图形特点找出五边形ABCDE内点的个数与分割成的三角形的个数的关系,总结规律即可;(2)根据规律列出方程,解方程得到答案(1)有1个点时,内部分割成5个三角形;有2个
14、点时,内部分割成5+27个三角形;有3个点时,内部分割成5+229个三角形;有4个点时,内部分割成5+2311个三角形; 以此类推,有n个点时,内部分割成5+2(n1)(2n+3)个三角形;故答案为11,2n+3;(2)令2n+3=2022,即2n=2019,显然这个方程没有整数解,原五边形不能被分割成2022个三角形【考点】本题考查图形类规律探索,熟练掌握不完全归纳的方法及求一元一次方程整数解的方法是解题关键 5、(1)系数:2,次数:3;(2)系数:-1,次数:3;(3)系数:,次数:2;(4)系数:,次数:5【解析】【分析】根据单项式的系数是数字因数,单项式的次数是各字母的次数之和做答即可【详解】解:(1)的系数:2,次数:3;(2)系数:-1,次数:3;(3)系数:,次数:2;(4)系数:,次数:5【考点】本题只要考查单项式的系数和次数的知识,根据其定义作答即可