收藏 分享(赏)

2016-2017学年高中数学北师大版选修4-1学案:第2章 章末分层突破 WORD版含解析.doc

上传人:高**** 文档编号:195679 上传时间:2024-05-26 格式:DOC 页数:9 大小:421KB
下载 相关 举报
2016-2017学年高中数学北师大版选修4-1学案:第2章 章末分层突破 WORD版含解析.doc_第1页
第1页 / 共9页
2016-2017学年高中数学北师大版选修4-1学案:第2章 章末分层突破 WORD版含解析.doc_第2页
第2页 / 共9页
2016-2017学年高中数学北师大版选修4-1学案:第2章 章末分层突破 WORD版含解析.doc_第3页
第3页 / 共9页
2016-2017学年高中数学北师大版选修4-1学案:第2章 章末分层突破 WORD版含解析.doc_第4页
第4页 / 共9页
2016-2017学年高中数学北师大版选修4-1学案:第2章 章末分层突破 WORD版含解析.doc_第5页
第5页 / 共9页
2016-2017学年高中数学北师大版选修4-1学案:第2章 章末分层突破 WORD版含解析.doc_第6页
第6页 / 共9页
2016-2017学年高中数学北师大版选修4-1学案:第2章 章末分层突破 WORD版含解析.doc_第7页
第7页 / 共9页
2016-2017学年高中数学北师大版选修4-1学案:第2章 章末分层突破 WORD版含解析.doc_第8页
第8页 / 共9页
亲,该文档总共9页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、章末分层突破自我校对相切相交抛物能双曲线 球的截面平面截球所得的交线是圆,连接球心O与截面圆的圆心O所得直线与截面垂直,设球的半径为R,圆的半径为r,则有r2OO2R2.已知过球面上A,B,C三点的截面和球心的距离等于球半径的一半,且ABBCCA2,求球面面积.【精彩点拨】设过A,B,C三点截面圆的圆心为OO,则OO平面ABC,且OOR,由ABC为等边三角形,易知O为ABC的中心,在OAAB.在RtOOA中,由勾股定理得出R,从而求出球面面积.【规范解答】如图,过A,B,C三点截面圆的圆心为O,连接AO,OO,AO,则OO平面ABC,OOAO.在ABC中,ABBCCA2,ABC为边长是2的正三

2、角形,AOAB.设球的半径为R,则AOR,OOR.在RtAOO中,由勾股定理得AO2AO2OO2,即R222,R,从而球面的面积为S4R242.再练一题1.(全国卷)已知A,B是球O的球面上两点,AOB90,C为该球面上的动点.若三棱锥OABC体积的最大值为36,则球O的表面积为() 【导学号:96990053】A.36B.64C.144D.256【解析】如图,设球的半径为R,AOB90,SAOBR2.VOABCVCAOB,而AOB面积为定值,当点C到平面AOB的距离最大时,VOABC最大,当C为与球的大圆面AOB垂直的直径的端点时,体积VOABC最大为R2R36,R6,球O的表面积为4R24

3、62144.故选C.【答案】C圆柱、圆锥的截面平面与圆柱面或圆锥面的交线问题,常常考虑作出恰当的轴截面,建立有关量的关系.设圆锥的底面半径为2,高为3,求:(1)内接正方体的棱长;(2)内切球的表面积.【精彩点拨】作出圆锥的轴截面,利用平面几何的知识求解.【规范解答】(1)过正方体的一顶点作圆锥的一个轴截面,如图所示.设正方体的棱长为a,则OCa,OOa.由VOCVOF,VOVOOCOF,即(3a)3a2,a1824.(2)作圆锥的一个轴截面,如图,设内切球的半径为R,则VB.BO为ABV的平分线,VOODVBBD,即(3R)R2,解得R(2),S球4R24(2)2(174).再练一题2.如图

4、21,一个圆柱被一个平面所截,截面椭圆的长轴长为5,短轴长为4,被截后的几何体的最短母线长为2,则这个几何体的体积为()图21A.20B.16C.14D.8【解析】由已知圆柱底面半径r2.即直径为4.设截面与圆柱母线成角,则sin ,cos .几何体的最长母线长为22cos 255.用一个同样的几何体补在上面,可得一个底半径r2,高为7的圆柱,其体积为V22728.所求几何体的体积为V14.【答案】C圆锥曲线的几何性质圆锥曲线的统一定义和几何性质是研究圆锥曲线的重要方法和途径.如图22,设动点P到点A(1,0)和B(1,0)的距离分别为d1和d2,APB2,且存在常数(01),使得d1d2si

5、n2.证明:动点P的轨迹C为双曲线.图22【精彩点拨】在PAB中由余弦定理可得|d1d2|201,|c|1,01,|d1d2|0,b0),则|BM|AB|2a,MBx18012060,M点的坐标为.M点在双曲线上,1,ab,ca,e.故选D.【答案】D2.(全国卷)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为() 【导学号:96990054】A.B.C.D.【解析】不妨设直线l经过椭圆的一个顶点B(0,b)和一个焦点F(c,0),则直线l的方程为1,即bxcybc0.由题意知2b,解得,即e.故选B.【答案】B3.(浙江高考)设双曲线x21的左、右焦

6、点分别为F1,F2.若点P在双曲线上,且F1PF2为锐角三角形,则|PF1|PF2|的取值范围是_.【解析】双曲线x21的左、右焦点分别为F1,F2,点P在双曲线上,|F1F2|4,|PF1|PF2|2.若F1PF2为锐角三角形,则由余弦定理知|PF1|2|PF2|2160,可化为(|PF1|PF2|)22|PF1|PF2|16.由|PF1|PF2|2,得(|PF1|PF2|)24|PF1|PF2|4.故2|PF1|PF2|,代入不等式可得(|PF1|PF2|)228,解得|PF1|PF2|2.不妨设P在左支上,|PF1|216|PF2|20,即(|PF1|PF2|)(|PF1|PF2|)16,又|PF1|PF2|2,|PF1|PF2|8.故2|PF1|PF2|8.【答案】(2,8)4.(江苏高考)现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为_.【解析】设新的底面半径为r,由题意得524228r24r28,r27,r.【答案】

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3