收藏 分享(赏)

2016届 数学一轮(理科) 人教B版 课件 第九章 平面解析几何 第5讲 椭圆 .ppt

上传人:高**** 文档编号:195436 上传时间:2024-05-26 格式:PPT 页数:31 大小:3.20MB
下载 相关 举报
2016届 数学一轮(理科) 人教B版 课件 第九章 平面解析几何 第5讲 椭圆 .ppt_第1页
第1页 / 共31页
2016届 数学一轮(理科) 人教B版 课件 第九章 平面解析几何 第5讲 椭圆 .ppt_第2页
第2页 / 共31页
2016届 数学一轮(理科) 人教B版 课件 第九章 平面解析几何 第5讲 椭圆 .ppt_第3页
第3页 / 共31页
2016届 数学一轮(理科) 人教B版 课件 第九章 平面解析几何 第5讲 椭圆 .ppt_第4页
第4页 / 共31页
2016届 数学一轮(理科) 人教B版 课件 第九章 平面解析几何 第5讲 椭圆 .ppt_第5页
第5页 / 共31页
2016届 数学一轮(理科) 人教B版 课件 第九章 平面解析几何 第5讲 椭圆 .ppt_第6页
第6页 / 共31页
2016届 数学一轮(理科) 人教B版 课件 第九章 平面解析几何 第5讲 椭圆 .ppt_第7页
第7页 / 共31页
2016届 数学一轮(理科) 人教B版 课件 第九章 平面解析几何 第5讲 椭圆 .ppt_第8页
第8页 / 共31页
2016届 数学一轮(理科) 人教B版 课件 第九章 平面解析几何 第5讲 椭圆 .ppt_第9页
第9页 / 共31页
2016届 数学一轮(理科) 人教B版 课件 第九章 平面解析几何 第5讲 椭圆 .ppt_第10页
第10页 / 共31页
2016届 数学一轮(理科) 人教B版 课件 第九章 平面解析几何 第5讲 椭圆 .ppt_第11页
第11页 / 共31页
2016届 数学一轮(理科) 人教B版 课件 第九章 平面解析几何 第5讲 椭圆 .ppt_第12页
第12页 / 共31页
2016届 数学一轮(理科) 人教B版 课件 第九章 平面解析几何 第5讲 椭圆 .ppt_第13页
第13页 / 共31页
2016届 数学一轮(理科) 人教B版 课件 第九章 平面解析几何 第5讲 椭圆 .ppt_第14页
第14页 / 共31页
2016届 数学一轮(理科) 人教B版 课件 第九章 平面解析几何 第5讲 椭圆 .ppt_第15页
第15页 / 共31页
2016届 数学一轮(理科) 人教B版 课件 第九章 平面解析几何 第5讲 椭圆 .ppt_第16页
第16页 / 共31页
2016届 数学一轮(理科) 人教B版 课件 第九章 平面解析几何 第5讲 椭圆 .ppt_第17页
第17页 / 共31页
2016届 数学一轮(理科) 人教B版 课件 第九章 平面解析几何 第5讲 椭圆 .ppt_第18页
第18页 / 共31页
2016届 数学一轮(理科) 人教B版 课件 第九章 平面解析几何 第5讲 椭圆 .ppt_第19页
第19页 / 共31页
2016届 数学一轮(理科) 人教B版 课件 第九章 平面解析几何 第5讲 椭圆 .ppt_第20页
第20页 / 共31页
2016届 数学一轮(理科) 人教B版 课件 第九章 平面解析几何 第5讲 椭圆 .ppt_第21页
第21页 / 共31页
2016届 数学一轮(理科) 人教B版 课件 第九章 平面解析几何 第5讲 椭圆 .ppt_第22页
第22页 / 共31页
2016届 数学一轮(理科) 人教B版 课件 第九章 平面解析几何 第5讲 椭圆 .ppt_第23页
第23页 / 共31页
2016届 数学一轮(理科) 人教B版 课件 第九章 平面解析几何 第5讲 椭圆 .ppt_第24页
第24页 / 共31页
2016届 数学一轮(理科) 人教B版 课件 第九章 平面解析几何 第5讲 椭圆 .ppt_第25页
第25页 / 共31页
2016届 数学一轮(理科) 人教B版 课件 第九章 平面解析几何 第5讲 椭圆 .ppt_第26页
第26页 / 共31页
2016届 数学一轮(理科) 人教B版 课件 第九章 平面解析几何 第5讲 椭圆 .ppt_第27页
第27页 / 共31页
2016届 数学一轮(理科) 人教B版 课件 第九章 平面解析几何 第5讲 椭圆 .ppt_第28页
第28页 / 共31页
2016届 数学一轮(理科) 人教B版 课件 第九章 平面解析几何 第5讲 椭圆 .ppt_第29页
第29页 / 共31页
2016届 数学一轮(理科) 人教B版 课件 第九章 平面解析几何 第5讲 椭圆 .ppt_第30页
第30页 / 共31页
2016届 数学一轮(理科) 人教B版 课件 第九章 平面解析几何 第5讲 椭圆 .ppt_第31页
第31页 / 共31页
亲,该文档总共31页,全部预览完了,如果喜欢就下载吧!
资源描述

1、考点突破夯基释疑考点一考点三考点二例 1训练1例 2训练2例 3训练3第 5 讲 椭 圆 概要课堂小结考点四例4训练4结束放映返回目录第2页 判断正误(在括号内打“”或“”)(1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆()(2)椭圆的离心率e越大,椭圆就越圆()(3)方程mx2ny21(m0,n0,mn)表示的曲线是椭圆()(4)椭圆上一点P与两焦点F1,F2构成PF1F2的周长为2a2c(其中a为椭圆的长半轴长,c为椭圆的半焦距)()夯基释疑结束放映返回目录第3页 考点突破解析(1)由条件知|PM|PF|.|PO|PF|PO|PM|OM|R|OF|.P点的轨迹是以O,F

2、为焦点的椭圆 考点一 椭圆的定义及其应用【例 1】(1)(2015枣庄模拟)如图所示,一圆形纸片的圆心为 O,F 是圆内一定点,M 是圆周上一动点,把纸片折叠使 M 与 F 重合,然后抹平纸片,折痕为 CD,设 CD 与 OM 交于点 P,则点 P 的轨迹是()A椭圆B双曲线C抛物线D圆(2)见下一页利用定义法判断结束放映返回目录第4页 考点突破|PF1|2|PF2|2|F1F2|24c2,(|PF1|PF2|)22|PF1|PF2|4c2,2|PF1|PF2|4a24c24b2.|PF1|PF2|2b2,考点一 椭圆的定义及其应用【例 1】(2)已知 F1,F2 是椭圆 C:x2a2y2b2

3、1(ab0)的两个焦点,P 为椭圆 C 上的一点,且PF1PF2.若PF1F2 的面积为 9,则 b_(2)由题意知|PF1|PF2|2a,PF1PF2,利用椭圆的定义SPF1F212|PF1|PF2|122b2b29.b3.答案(1)A(2)3 结束放映返回目录第5页 考点突破规律方法 椭圆定义的应用主要有两个方面:一是确认平面内与两定点有关的轨迹是否为椭圆;二是当P在椭圆上时,与椭圆的两焦点F1,F2组成的三角形通常称为“焦点三角形”,利用定义可求其周长;利用定义和余弦定理可求|PF1|PF2|;通过整体代入可求其面积等 考点一 椭圆的定义及其应用结束放映返回目录第6页 考点突破【训练 1

4、】(1)(2015丽水模拟)已知 F1,F2 是椭圆x216y291 的两焦点,过点 F2 的直线交椭圆于 A,B 两点,在AF1B 中,若有两边之和是 10,则第三边的长度为()A6 B5 C4 D3(2)(2015保定一模)与圆 C1:(x3)2y21 外切,且与圆 C2:(x3)2y281 内切的动圆圆心 P 的轨迹方程为_解析(1)由椭圆定义知,|AF1|AF2|8,|BF1|BF2|8,考点一 椭圆的定义及其应用两式相加得|AB|AF1|BF1|16,即AF1B周长为16,又因为在AF1B中,有两边之和是10,所以第三边长度为16106.选A 结束放映返回目录第7页 考点突破【训练

5、1】(1)(2015丽水模拟)已知 F1,F2 是椭圆x216y291 的两焦点,过点 F2 的直线交椭圆于 A,B 两点,在AF1B 中,若有两边之和是 10,则第三边的长度为()A6 B5 C4 D3(2)(2015保定一模)与圆 C1:(x3)2y21 外切,且与圆 C2:(x3)2y281 内切的动圆圆心 P 的轨迹方程为_得点 P 的轨迹方程为x225y2161.考点一 椭圆的定义及其应用(2)设动圆的半径为r,圆心为P(x,y),则有|PC1|r1,|PC2|9r.所以|PC1|PC2|10|C1C2|,即P在以C1(3,0),C2(3,0)为焦点,长轴长为10的椭圆上,答案(1)

6、A(2)x225y2161结束放映返回目录第8页 考点突破考点二 求椭圆的标准方程【例 2】(1)在平面直角坐标系 xOy 中,椭圆 C 的中心为原点,焦点 F1,F2 在 x 轴上,离心率为 22.过 F1 的直线 l 交 C 于 A,B两点,且ABF2 的周长为 16,那么椭圆 C 的方程为_解析(1)设椭圆方程为x2a2y2b21(ab0),由 e 22,知ca 22,故b2a212.椭圆 C 的方程为x216y281.由于ABF2的周长为|AB|BF2|AF2|(|AF1|AF2|)(|BF1|BF2|)4a16,故a4.b28,结束放映返回目录第9页 考点突破考点二 求椭圆的标准方程

7、【例 2】(2)(2014安徽卷)设 F1,F2 分别是椭圆 E:x2y2b21(0bb0)相交于 A,B 两点,若 M 是线段 AB 的中点,则椭圆 C 的离心率等于_(2)见下一页x 21a2y21b21,x22a2y22b21,则有x21x22a2y21y22b20,(x1x2)(x1x2)a2(y1y2)(y1y2)b20,由题意知 x1x22,y1y22,y1y2x1x212,所以 2a2122b20,解析(1)设A(x1,y1),B(x2,y2),且A,B在椭圆上,a22b2,e 22.结束放映返回目录第17页 考点突破考点三 椭圆的几何性质【例 3】(2)(2014包头测试与评估

8、)已知椭圆x2a2y2b21 的左顶点为A,左焦点为 F,点 P 为该椭圆上任意一点;若该椭圆的上顶点到焦点的距离为 2,离心率 e12,则APFP的取值范围是_因为离心率 e12,所以 c1,b a2c2 3,则椭圆方程为x24 y231,设 P(x,y),则APFP(x2,y)(x1,y)x23x2y2.(2)因为椭圆的上顶点到焦点的距离为2,所以a2.所以A点的坐标为(2,0),F点的坐标为(1,0)由椭圆方程得 y2334x2,所以APFPx23x34x2514(x6)24,因为 x2,2,所以APFP0,12答案(1)22 (2)0,12结束放映返回目录第18页 考点突破规律方法(1

9、)求椭圆的离心率的方法:直接求出a,c来求解e.通过已知条件列出方程组,解出a,c的值;构造a,c的齐次式,解出e.由已知条件得出关于a,c的二元齐次方程,然后转化为关于离心率e的一元二次方程求解;通过取特殊值或特殊位置,求出离心率(2)椭圆的范围或最值问题常常涉及一些不等式例如,axa,byb,0e1等,在求椭圆相关量的范围时,要注意应用这些不等关系 考点三 椭圆的几何性质结束放映返回目录第19页 考点突破因为直线l与圆C2:x2(y3)21相切,【训练 3】已知椭圆 C1:x2a2y2b21(ab0)的右焦点为 F,上顶点为 A,P 为 C1 上任一点,MN 是圆 C2:x2(y3)21

10、的一条直径,与 AF 平行且在 y 轴上的截距为 3 2的直线 l 恰好与圆 C2 相切(1)求椭圆 C1 的离心率;(2)若PM PN 的最大值为 49,求椭圆 C1 的方程解(1)由题意可知,直线 l 的方程为 bxcy(3 2)c0,所以 d|3c3c 2c|b2c21,考点三 椭圆的几何性质从而 e 22.化简得c2b2,即a22c2,结束放映返回目录第20页 考点突破(2)设P(x,y),圆C2的圆心记为C2,【训练 3】已知椭圆 C1:x2a2y2b21(ab0)的右焦点为 F,上顶点为 A,P 为 C1 上任一点,MN 是圆 C2:x2(y3)21 的一条直径,与 AF 平行且在

11、 y 轴上的截距为 3 2的直线 l 恰好与圆 C2 相切(2)若PM PN 的最大值为 49,求椭圆 C1 的方程则 x22c2y2c21(c0),又因为PM PN(PC2C2M)(PC2C2N)考点三 椭圆的几何性质PC 22C2N 2x2(y3)21(y3)22c217(cyc)当c3时,(PM PN)max172c249,解得 c4,此时椭圆方程为x232y2161;当 0c3 时,(PM PN)max(c3)2172c249,解得 c5 23.但 c5 230,且 c5 233,故舍去综上所述,椭圆 C1 的方程为x232y2161.(PC2C2N)(PC2C2N)结束放映返回目录第

12、21页 考点突破考点四 直线与椭圆的位置关系【例 4】(2014四川卷)已知椭圆 C:x2a2y2b21(ab0)的左焦点为 F(2,0),离心率为 63.(1)求椭圆 C 的标准方程;(2)设 O 为坐标原点,T 为直线 x3 上一点,过 F 作 TF 的垂线交椭圆于 P,Q.当四边形 OPTQ 是平行四边形时,求四边形 OPTQ的面积解(1)由已知可得,ca 63,c2,所以 a 6.又由 a2b2c2,解得 b 2,所以椭圆 C 的标准方程是x26 y221.(2)设T点的坐标为(3,m),则直线 TF 的斜率 kTFm03(2)m.结束放映返回目录第22页 考点突破考点四 直线与椭圆的

13、位置关系【例 4】(2014四川卷)已知椭圆 C:x2a2y2b21(ab0)的左焦点为 F(2,0),离心率为 63.(2)设 O 为坐标原点,T 为直线 x3 上一点,过 F 作 TF 的垂线交椭圆于 P,Q.当四边形 OPTQ 是平行四边形时,求四边形 OPTQ 的面积当 m0 时,直线 PQ 的斜率 kPQ1m,得xmy2,x26 y221.消去 x,直线PQ的方程是xmy2.当m0时,直线PQ的方程是x2,也符合xmy2的形式 设P(x1,y1),Q(x2,y2),将直线PQ的方程与椭圆C的方程联立,得(m23)y24my20,结束放映返回目录第23页 考点突破考点四 直线与椭圆的位

14、置关系【例 4】(2014四川卷)已知椭圆 C:x2a2y2b21(ab0)的左焦点为 F(2,0),离心率为 63.(2)设 O 为坐标原点,T 为直线 x3 上一点,过 F 作 TF 的垂线交椭圆于 P,Q.当四边形 OPTQ 是平行四边形时,求四边形 OPTQ 的面积所以 y1y2 4mm23,y1y2 2m23,x1x2m(y1y2)4 12m23.其判别式16m28(m23)0.因为四边形OPTQ是平行四边形,所以OP QT,即(x1,y1)(3x2,my2)所以x1x2 12m233,y1y2 4mm23m.解得m1.结束放映返回目录第24页 考点突破考点四 直线与椭圆的位置关系【

15、例 4】(2014四川卷)已知椭圆 C:x2a2y2b21(ab0)的左焦点为 F(2,0),离心率为 63.(2)设 O 为坐标原点,T 为直线 x3 上一点,过 F 作 TF 的垂线交椭圆于 P,Q.当四边形 OPTQ 是平行四边形时,求四边形 OPTQ 的面积此时,S 四边形 OPTQ2SOPQ212|OF|y1y2|24mm2324 2m232 3.结束放映返回目录第25页 考点突破考点四 直线与椭圆的位置关系规律方法(1)解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题涉及弦中点的问题常常用“点差法”

16、解决,往往会更简单(2)设直线与椭圆的交点坐标为 A(x1,y1),B(x2,y2),则|AB|(1k2)(x1x2)24x1x211k2(y1y2)24y1y2(k 为直线斜率)提醒:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式结束放映返回目录第26页 考点突破【训练 4】(2014陕西卷)已知椭圆x2a2y2b21(ab0)经过点(0,3),离心率为12,左、右焦点分别为 F1(c,0),F2(c,0)(1)求椭圆的方程;(2)若直线 l:y12xm 与椭圆交于 A,B 两点,与以 F1F2 为直径的圆交于 C,D 两点,且满足|AB|CD|5 34,求直线l

17、 的方程解(1)由题设知b 3,ca12,b2a2c2,解得 a2,b 3,c1,椭圆的方程为x24 y231.考点四 直线与椭圆的位置关系结束放映返回目录第27页 考点突破【训练 4】(2014陕西卷)已知椭圆x2a2y2b21(ab0)经过点(0,3),离心率为12,左、右焦点分别为 F1(c,0),F2(c,0)(2)若直线 l:y12xm 与椭圆交于 A,B 两点,与以 F1F2 为直径的圆交于 C,D 两点,且满足|AB|CD|5 34,求直线 l 的方程圆心到直线 l 的距离 d2|m|5,由 d1,得|m|52.(*)|CD|2 1d22145m2 2554m2.考点四 直线与椭

18、圆的位置关系(2)由(1)知,以F1F2为直径的圆的方程为x2y21,结束放映返回目录第28页 考点突破由y12xm,x24 y231,得 x2mxm230,|AB|1122m24(m23)1524m2.考点四 直线与椭圆的位置关系设A(x1,y1),B(x2,y2),显示/隐藏题目由根与系数的关系可得x1x2m,x1x2m23.由|AB|CD|5 34,得4m254m21,解得 m 33,满足(*)直线 l 的方程为 y12x 33 或 y12x 33.结束放映返回目录第29页 思想方法课堂小结1椭圆定义的集合语言:PM|MF1|MF2|2a,2a|F1F2|往往是解决计算问题的关键,如果题

19、目的条件能转化为动点到两定点距离和为常数的问题可考虑利用椭圆定义,或涉及到椭圆上的点到焦点的距离,也可考虑椭圆定义.2求椭圆的标准方程,常采用“先定位,后定量”的方法(待定系数法)先“定位”,就是先确定椭圆和坐标系的相对位置,以椭圆的中心为原点的前提下,看焦点在哪条坐标轴上,确定标准方程的形式;再“定量”,就是根据已知条件,通过解方程(组)等手段,确定a2,b2的值,代入所设的方程,即可求出椭圆的标准方程若不能确定焦点的位置,这时的标准方程常可设为mx2ny21(m0,n0且mn)结束放映返回目录第30页 易错防范课堂小结1在解关于离心率 e 的二次方程时,要注意利用椭圆的离心率 e(0,1)进行根的取舍,否则将产生增根2注意椭圆的范围,在设椭圆x2a2y2b21(ab0)上点的坐标为 P(x,y)时,则|x|a,这往往在求与点 P 有关的最值问题中特别有用,也是容易被忽略而导致求最值错误的原因结束放映返回目录第31页(见教辅)

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3