收藏 分享(赏)

京改版八年级数学上册第十二章三角形专题练习试卷(含答案解析).docx

上传人:高**** 文档编号:1954149 上传时间:2024-06-13 格式:DOCX 页数:25 大小:662.57KB
下载 相关 举报
京改版八年级数学上册第十二章三角形专题练习试卷(含答案解析).docx_第1页
第1页 / 共25页
京改版八年级数学上册第十二章三角形专题练习试卷(含答案解析).docx_第2页
第2页 / 共25页
京改版八年级数学上册第十二章三角形专题练习试卷(含答案解析).docx_第3页
第3页 / 共25页
京改版八年级数学上册第十二章三角形专题练习试卷(含答案解析).docx_第4页
第4页 / 共25页
京改版八年级数学上册第十二章三角形专题练习试卷(含答案解析).docx_第5页
第5页 / 共25页
京改版八年级数学上册第十二章三角形专题练习试卷(含答案解析).docx_第6页
第6页 / 共25页
京改版八年级数学上册第十二章三角形专题练习试卷(含答案解析).docx_第7页
第7页 / 共25页
京改版八年级数学上册第十二章三角形专题练习试卷(含答案解析).docx_第8页
第8页 / 共25页
京改版八年级数学上册第十二章三角形专题练习试卷(含答案解析).docx_第9页
第9页 / 共25页
京改版八年级数学上册第十二章三角形专题练习试卷(含答案解析).docx_第10页
第10页 / 共25页
京改版八年级数学上册第十二章三角形专题练习试卷(含答案解析).docx_第11页
第11页 / 共25页
京改版八年级数学上册第十二章三角形专题练习试卷(含答案解析).docx_第12页
第12页 / 共25页
京改版八年级数学上册第十二章三角形专题练习试卷(含答案解析).docx_第13页
第13页 / 共25页
京改版八年级数学上册第十二章三角形专题练习试卷(含答案解析).docx_第14页
第14页 / 共25页
京改版八年级数学上册第十二章三角形专题练习试卷(含答案解析).docx_第15页
第15页 / 共25页
京改版八年级数学上册第十二章三角形专题练习试卷(含答案解析).docx_第16页
第16页 / 共25页
京改版八年级数学上册第十二章三角形专题练习试卷(含答案解析).docx_第17页
第17页 / 共25页
京改版八年级数学上册第十二章三角形专题练习试卷(含答案解析).docx_第18页
第18页 / 共25页
京改版八年级数学上册第十二章三角形专题练习试卷(含答案解析).docx_第19页
第19页 / 共25页
京改版八年级数学上册第十二章三角形专题练习试卷(含答案解析).docx_第20页
第20页 / 共25页
京改版八年级数学上册第十二章三角形专题练习试卷(含答案解析).docx_第21页
第21页 / 共25页
京改版八年级数学上册第十二章三角形专题练习试卷(含答案解析).docx_第22页
第22页 / 共25页
京改版八年级数学上册第十二章三角形专题练习试卷(含答案解析).docx_第23页
第23页 / 共25页
京改版八年级数学上册第十二章三角形专题练习试卷(含答案解析).docx_第24页
第24页 / 共25页
京改版八年级数学上册第十二章三角形专题练习试卷(含答案解析).docx_第25页
第25页 / 共25页
亲,该文档总共25页,全部预览完了,如果喜欢就下载吧!
资源描述

1、京改版八年级数学上册第十二章三角形专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若三角形的三边为a,b,c、满足a2+b2+c2+506a+8b+10c,此三角形的形状是()A锐角三角形B直角三

2、角形C钝角三角形D不确定2、如图,在和中,则()A30B40C50D603、如图,在ABC中,AB6,AC9,ADBC于D,M为AD上任一点,则MC2MB2等于()A29B32C36D454、如图甲,直角三角形的三边a,b,c,满足的关系利用这个关系,探究下面的问题:如图乙,是腰长为1的等腰直角三角形,延长至,使,以为底,在外侧作等腰直角三角形,再延长至,使,以为底,在外侧作等腰直角三角形,按此规律作等腰直角三角形(,n为正整数),则的长及的面积分别是()A2,B4,C,D2,5、下列图形中,是轴对称图形的是()ABCD6、自新冠肺炎疫情发生以来,全国人民共同抗疫下面是科学防控知识的图片,图片

3、上有图案和文字说明,其中的图案是轴对称图形的是()ABCD7、如图,ABC和EDF中,BD90,AE,点B,F,C,D在同一条直线上,再增加一个条件,不能判定ABCEDF的是()AABEDBACEFCACEFDBFDC8、如图,AE是ABC的中线,D是BE上一点,若EC6,DE2,则BD的长为()A4B3C2D19、下列电视台标志中是轴对称图形的是()ABCD10、如图,两座建筑物,相距160km,小月从点沿BC走向点C,行走ts后她到达点,此时她仰望两座建筑物的顶点和,两条视线的夹角正好为,且已知建筑物的高为,小月行走的速度为,则小月行走的时间的值为()A100B80C60D50第卷(非选择

4、题 70分)二、填空题(5小题,每小题4分,共计20分)1、在ABC中,AB=,AC=5,若BC边上的高等于3,则BC边的长为_2、如图将长方形折叠,折痕为,的对应边与交于点,若,则的度数为_3、已知AOB60,以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在AOB内交于点P,以OP为边作POC15,则BOC的度数为_4、如图,在中,按以下步骤作图:以点B为圆心,任意长为半径作弧,分别交AB、BC于点D、E分别以点D、E为圆心,大于的同样长为半径作弧,两弧交于点F作射线BF交AC于点G如果,的面积为18,则的面积为_5、如图,将分

5、别含有、角的一副三角板重叠,使直角顶点重合,若两直角重叠形成的角为,则图中角的度数为_三、解答题(5小题,每小题10分,共计50分)1、某班举行文艺晚会,桌子摆成两条直线(),桌面上摆满了橘子,桌面上摆满了糖果,坐在C处的小明先拿橘子再拿糖果,然后回到座位,请你帮他设计路线,使其行走的总路程最短(保留作图痕迹)2、如图,在中,点是中点,点为边上一点,连接,以为边在的左侧作等边三角形,连接(1)的形状为_;(2)随着点位置的变化,的度数是否变化?并结合图说明你的理由;(3)当点落在边上时,若,请直接写出的长3、如图和都是等腰直角三角形,顶点在的斜边上,求证:4、如图,在中,是边上的一点,平分,交

6、边于点,连接(1)求证:;(2)若,求的度数5、如图,已知,(1)求的长度;(2)求四边形的面积-参考答案-一、单选题1、B【解析】【分析】已知等式变形后,利用完全平方公式化简,利用非负数的性质求出a,b,c的值,即可做出判断【详解】解:根据题意得:a2+b2+c2+50-6a-8b-10c=0,(a3)2(b5)2(c5)20,a30,b50,c50,a3,b4,c5,a2b2=c2,则三角形形状为直角三角形故选:B【考点】此题考查了因式分解的应用,熟练掌握完全平方公式是解本题的关键2、D【解析】【分析】由题意可证,有,由三角形内角和定理得,计算求解即可【详解】解:ABC和ADC均为直角三角

7、形在和中故选D【考点】本题考查了三角形全等,三角形的内角和定理解题的关键在于找出角度的数量关系3、D【解析】【分析】在RtABD及RtADC中可分别表示出BD2及CD2,在RtBDM及RtCDM中分别将BD2及CD2的表示形式代入表示出BM2和MC2,然后作差即可得出结果【详解】解:在RtABD和RtADC中,BD2AB2AD2,CD2AC2AD2,在RtBDM和RtCDM中,BM2BD2MD2AB2AD2MD2,MC2CD2MD2AC2AD2MD2,MC2MB2(AC2AD2MD2)(AB2AD2MD2)AC2AB245故选:D【考点】本题考查了勾股定理的知识,题目有一定的技巧性,比较新颖,

8、解答本题需要认真观察,分别两次运用勾股定理求出MC2和MB2是本题的难点,重点还是在于勾股定理的熟练掌握4、A【解析】【分析】根据题意结合等腰直角三角形的性质,即可判断出的长,再进一步推出一般规律,利用规律求解的面积即可【详解】由题意可得:,为等腰直角三角形,且“直角三角形的三边a,b,c,满足的关系”,根据题意可得:,总结出,归纳得出一般规律:,故选:A【考点】本题考查等腰直角三角形的性质,图形变化类的规律探究问题,立即题意并灵活运用等腰直角三角形的性质归纳一般规律是解题关键5、D【解析】【分析】根据“如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形”判断即可得

9、【详解】解:根据题意,A、B、C选项中均不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;D选项能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:D【考点】本题主要考查轴对称图形,解题的关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴6、D【解析】【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行分析即可【详解】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、不是轴

10、对称图形,不合题意;D、是轴对称图形,符合题意故选:D【考点】本题考查了轴对称图形,熟练掌握轴对称图形的定义是解题的关键7、C【解析】【分析】根据全等三角形的判定方法即可判断.【详解】A. ABED,可用ASA判定ABCEDF;B. ACEF,可用AAS判定ABCEDF;C. ACEF,不能用AAA判定ABCEDF,故错误;D. BFDC,可用AAS判定ABCEDF;故选C.【考点】此题主要考查全等三角形的判定,解题的关键是熟知全等三角形的判定方法.8、A【解析】【分析】根据三角形中线定义得BE=EC=6,再由BD=BE-DE求解即可【详解】解:AE是ABC的中线,EC=6,BE=EC=6,

11、DE=2,BD=BEDE=62=4,故选:A【考点】本题考查了三角形的中线,熟知三角形的中线定义是解答的关键9、A【解析】【分析】根据轴对称图形的定义进行判断,即一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形【详解】解:A选项中的图形是轴对称图形,对称轴有两条,如图所示;B、C、D选项中的图形均不能沿某条直线折叠,直线两旁的部分能够互相重合,因此,它们都不是轴对称图形;故选:A【考点】本题考查了轴对称图形的概念,其中正确理解轴对称图形的概念是解题关键10、A【解析】【分析】首先证明A=DEC,然后可利用AAS判定ABEECD,进而可得EC=AB=60m,再求出

12、BE的长,然后利用路程除以速度可得时间【详解】解:AED=90,AEB+DEC=90,ABE=90,A+AEB=90,A=DEC,在ABE和ECD中,ABEECD(AAS),EC=AB=60m,BC=160m,BE=100m,小华走的时间是1001=100(s),故选:A【考点】本题主要考查了全等三角形的应用,关键是正确判定ABEECD二、填空题1、9或1【解析】【详解】【分析】ABC中,ACB分锐角和钝角两种:如图1,ACB是锐角时,根据勾股定理计算BD和CD的长可得BC的值;如图2,ACB是钝角时,同理得:CD=4,BD=5,根据BC=BDCD代入可得结论【详解】有两种情况:如图1,AD是

13、ABC的高,ADB=ADC=90,由勾股定理得:BD=5,CD=4,BC=BD+CD=5+4=9;如图2,同理得:CD=4,BD=5,BC=BDCD=54=1,综上所述,BC的长为9或1;故答案为9或1【考点】本题考查了勾股定理的运用,熟练掌握勾股定理是关键,并注意运用了分类讨论的思想解决问题2、70【解析】【分析】依据矩形的性质以及折叠的性质,即可得到DFE=BEF,设BEF=,则DFE=BEF=,根据BECF,即可得出BEF+CFE=180,进而得到BEF的度数【详解】解:四边形ABCD是矩形,ABDC,BEF=DFE,由折叠可得,BEF=BEF,设BEF=,则DFE=BEF=,BECF,

14、BEF+CFE=180,即+40=180,解得=70,BEF=70,故答案为:70【考点】本题考查折叠问题以及矩形的性质的运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等3、或【解析】【分析】以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在内交于点P,则OP为的平分线,以OP为边作,则为作或的角平分线,即可求解【详解】解:以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在内交于点P,得到OP为的平分线,再以OP为边作,则

15、为作或的角平分线,所以或故答案为:或【考点】本题考查的是复杂作图,主要要理解作图是在作角的平分线,同时要考虑以OP为边作的两种情况,避免遗漏4、27【解析】【分析】由作图步骤可知BG为ABC的角平分线,过G作GHBC,GMAB,可得GM=GH,然后再结合已知条件和三角形的面积公式求得GH,最后运用三角形的面积公式解答即可【详解】解:由作图作法可知:BG为ABC的角平分线过G作GHBC,GMABGM=GH,故答案为27【考点】本题考查了角平分线定理和三角形面积公式的应用,通过作法发现角平分线并灵活应用角平分线定理是解答本题的关键5、#140度【解析】【分析】如图,首先标注字母,利用三角形的内角和

16、求解,再利用对顶角的相等,三角形的外角的性质可得答案【详解】解:如图,标注字母,由题意得: 故答案为:【考点】本题考查的是三角形的内角和定理,三角形的外角的性质,掌握以上知识是解题的关键三、解答题1、见解析【解析】【分析】作点C关于直线AO的对称点C,点C关于直线OB的对称点D,连接CD交AO于M,交OB于N,则路线CM-MN-NC即为所求【详解】如图所示,小明的行走路线为,此时所走的总路程为的长,总路程最短【考点】本题考查了轴对称-最短路线问题,作图-应用与设计作图,首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图解题的关键是利用了轴对称的性质,两点之间

17、线段最短的性质求解2、(1)等边三角形;(2)的度数不变,理由见解析;(3)2【解析】【分析】(1)由、,可得出、,结合点是中点,可得出,进而即可得出为等边三角形;(2)由(1)可得出,根据可得出,再结合、即可得出,根据全等三角形的性质即可得出,即的度数不变;(3)易证为等腰三角形,由等腰三角形及等边三角形的性质可得出,进而可得出【详解】解:(1)在中,点是中点,为等边三角形故答案为等边三角形(2)的度数不变,理由如下:,点是中点,为等边三角形,又为等边三角形,在和中,即的度数不变(3)为等边三角形,为等腰三角形,【考点】本题考查了等边三角形的判定与性质、全等三角形的判定与性质、含度角的直角三

18、角形勾股定理以及等腰三角形的性质,解题的关键是:(1)找出、;(2)利用全等三角形的判定定理找出;(3)根据等腰三角形及等边三角形的性质找出3、证明见解析【解析】【分析】连结BD,易证,即BD=AE、AC=BC又可证明出ADB=90,再结合勾股定理即可得到所要证明的等式是成立的【详解】证明:如图,连结BD ,在EAC和DBC中, 又, 在中, 在中, 【考点】本题考查等腰直角三角形的性质,全等三角形的判定和性质以及勾股定理灵活应用全等三角形的判定和性质是解题关键4、 (1)见解析;(2)【解析】【分析】(1)由角平分线定义得出,由证明即可;(2)由三角形内角和定理得出,由角平分线定义得出,在中

19、,由三角形内角和定理即可得出答案【详解】(1)证明:平分,在和中,;(2),平分,在中,【考点】本题考查了全等三角形的判定与性质、角平分线的定义、三角形内角和定理;熟练掌握三角形内角和定理和角平分线定义,证明三角形全等是解题的关键5、(1)BD=15(2) 210m2.【解析】【分析】(1)根据勾股定理即可求出BD的长;(2)先根据勾股定理的逆定理判断BDC是直角三角形,然后根据四边形ABCD的面积等于ABD和BDC的面积和即可得出答案【详解】解:(1)ABD=90,AB2+BD2=AD2,82+BD2=172,BD=15;(2)BD=15,DC=20,BC=25,BD2+DC2=BC2,BDC=90,四边形的面积=ABBD+CDBD=815+2015=210m2【考点】本题考查了勾股定理和勾股定理的逆定理的应用,根据勾股定理的逆定理判断出BDC是直角三角形是解决此题的关键

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3